On M-operators of q-lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 2, pp. 119-129.

Voir la notice de l'article provenant de la source Library of Science

It is well known that every complete lattice can be considered as a complete lattice of closed sets with respect to appropriate closure operator. The theory of q-lattices as a natural generalization of lattices gives rise to a question whether a similar statement is true in the case of q-lattices. In the paper the so-called M-operators are introduced and it is shown that complete q-lattices are q-lattices of closed sets with respect to M-operators.
Keywords: (complete) q-lattice, closure operator, M-operator
@article{DMGAA_2002_22_2_a1,
     author = {Hala\v{s}, Radom{\'\i}r},
     title = {On {M-operators} of q-lattices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {119--129},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a1/}
}
TY  - JOUR
AU  - Halaš, Radomír
TI  - On M-operators of q-lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2002
SP  - 119
EP  - 129
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a1/
LA  - en
ID  - DMGAA_2002_22_2_a1
ER  - 
%0 Journal Article
%A Halaš, Radomír
%T On M-operators of q-lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2002
%P 119-129
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a1/
%G en
%F DMGAA_2002_22_2_a1
Halaš, Radomír. On M-operators of q-lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 2, pp. 119-129. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a1/

[1] I. Chajda, Lattices on quasiordered sets, Acta Univ. Palack. Olomuc., Fac. Rerum Natur., Math. 31 (1992), 6-12.

[2] I. Chajda and M. Kotrle, Subdirectly irreducible and congruence distributive q-lattices, Czechoslovak Math. J. 43 (1993), 635-642.

[3] I. Chajda, Congruence properties of algebras in nilpotent shifts of varieties, 'General Algebra and Discrete Mathematics', Heldermann Verlag, Lemgo 1995, 35-46.