On p-semirings
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 2, pp. 107-117.

Voir la notice de l'article provenant de la source Library of Science

A class of semirings, so called p-semirings, characterized by a natural number p is introduced and basic properties are investigated. It is proved that every p-semiring is a union of skew rings. It is proved that for some p-semirings with non-commutative operations, this union contains rings which are commutative and possess an identity.
Keywords: semiring, p-semiring, p-semigroup, anti-inverse semigroup, union of rings, skew ring
@article{DMGAA_2002_22_2_a0,
     author = {Budimirovi\'c, Branka and Budimirovi\'c, Vjekoslav and \v{S}e\v{s}elja, Branimir},
     title = {On p-semirings},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {107--117},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a0/}
}
TY  - JOUR
AU  - Budimirović, Branka
AU  - Budimirović, Vjekoslav
AU  - Šešelja, Branimir
TI  - On p-semirings
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2002
SP  - 107
EP  - 117
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a0/
LA  - en
ID  - DMGAA_2002_22_2_a0
ER  - 
%0 Journal Article
%A Budimirović, Branka
%A Budimirović, Vjekoslav
%A Šešelja, Branimir
%T On p-semirings
%J Discussiones Mathematicae. General Algebra and Applications
%D 2002
%P 107-117
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a0/
%G en
%F DMGAA_2002_22_2_a0
Budimirović, Branka; Budimirović, Vjekoslav; Šešelja, Branimir. On p-semirings. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 2, pp. 107-117. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_2_a0/

[1] B. Budimirović, On a class of p-semirings, M.Sc. Thesis, Faculty of Sciences, University of Novi Sad, 2001.

[2] V. Budimirović, A Contribution to the Theory of Semirings, Ph.D. Thesis, Fac. of Sci., University of Novi Sad, Novi Sad, 2001.

[3] V. Budimirović, On p-semigroups, Math. Moravica 4 (2000), 5-20.

[4] V. Budimirović and B. Seselja, Operators H, S and P in the classes of p-semigroups and p-semirings, Novi Sad J. Math. 32 (2002), 127-132.

[5] S. Bogdanović, S. Milić and V. Pavlović, Anti-inverse semigroups, Publ. Inst. Math. (Beograd) (N.S.) 24 (38) (1978), 19-28.

[6] K. Głazek, A guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences, Kluwer Acad. Publ. Dordrecht 2002.

[7] J.S. Golan, The theory of semirings with applications in mathematics and theoretical computer sciences, Longman Scientific Technical, Harlow 1992.

[8] U. Hebisch and H.J. Weinert, Semirings, Algebraic theory and applications in mathematics and computer sciences, World Scientific, Singapore 1999.

[9] I.N. Herstein, Wedderburn's Theorem and a Theorem of Jacobson, Amer. Math. Monthly 68 (1961), 249-251.