Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2002_22_1_a5, author = {Jakub{\'\i}k, J\'an}, title = {On the lattice of additive hereditary properties of finite graphs}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {73--86}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a5/} }
TY - JOUR AU - Jakubík, Ján TI - On the lattice of additive hereditary properties of finite graphs JO - Discussiones Mathematicae. General Algebra and Applications PY - 2002 SP - 73 EP - 86 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a5/ LA - en ID - DMGAA_2002_22_1_a5 ER -
Jakubík, Ján. On the lattice of additive hereditary properties of finite graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 73-86. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a5/
[1] G. Birkhoff, Lattice Theory, (the 3-rd ed.), Amer. Math. Soc., Providence, RI, 1967.
[2] M. Borowiecki, I. Broere, M. Frick, P. Mihók, and G. Semanisin, A survey of hereditary properties of graphs, Discussiones Math.- Graph Theory 17 (1997), 5-50.
[3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, 'Advances in Graph Theory', Vishwa International Publications, Gulbarga 1991, 41-68.
[4] G. Grätzer and E. T. Schmidt, On the Jordan-Dedekind chain condition, Acta Sci. Math. 18 (1957), 52-56.
[5] J. Jakubík, On the Jordan-Dedekind chain condition, Acta Sci. Math. 16 (1955), 266-269.
[6] J. Jakubík, A remark on the Jordan-Dedekind chain condition in Boolean algebras (Slovak), Casopis Pest. Mat. 82 (1957), 44-46.
[7] J. Jakubík, On chains in Boolean algebras (Slovak), Mat. Fyz. Casopis SAV 8 (1958), 193-202.
[8] J. Jakubí k, Die Jordan-Dedekindsche Bedingung im direkten Produkt von geordneten Mengen, Acta Sci. Math. 24 (1963), 20-23.
[9] P. Mihók, On graphs critical with respect to generalized independence numbers, Colloq. Math. Soc. J. Bolyai 52 (1987), 417-421.
[10] G.N. Raney, Completely distributive complete lattices, Proc. Amer. Math. Soc. 3 (1952), 677-680.
[11] G.N. Raney, A subdirect-union representation for completely distributive lattices, Proc. Amer. Math. Soc. 4 (1952), 518-522.
[12] G.N. Raney, Tight Galois connection and complete distributivity, Trans. Amer. Math. Soc. 97 (1960), 418-426.
[13] R. Sikorski, Boolean Algebras (the second edition), Springer-Verlag, Berlin 1964.
[14] G. Szász, Generalization of a theorem of Birkhoff concerning maximal chains of a certain type of lattices, Acta Sci. Math. 16 (1955), 89-91.