On the lattice of additive hereditary properties of finite graphs
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 73-86.

Voir la notice de l'article provenant de la source Library of Science

In this paper it is proved that the lattice of additive hereditary properties of finite graphs is completely distributive and that it does not satisfy the Jordan-Dedekind condition for infinite chains.
Keywords: Lattice, complete distributivity, finite graph, additive hereditary property, generalized Jordan-Dedekind condition
@article{DMGAA_2002_22_1_a5,
     author = {Jakub{\'\i}k, J\'an},
     title = {On the lattice of additive hereditary properties of finite graphs},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {73--86},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a5/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - On the lattice of additive hereditary properties of finite graphs
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2002
SP  - 73
EP  - 86
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a5/
LA  - en
ID  - DMGAA_2002_22_1_a5
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T On the lattice of additive hereditary properties of finite graphs
%J Discussiones Mathematicae. General Algebra and Applications
%D 2002
%P 73-86
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a5/
%G en
%F DMGAA_2002_22_1_a5
Jakubík, Ján. On the lattice of additive hereditary properties of finite graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 73-86. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a5/

[1] G. Birkhoff, Lattice Theory, (the 3-rd ed.), Amer. Math. Soc., Providence, RI, 1967.

[2] M. Borowiecki, I. Broere, M. Frick, P. Mihók, and G. Semanisin, A survey of hereditary properties of graphs, Discussiones Math.- Graph Theory 17 (1997), 5-50.

[3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, 'Advances in Graph Theory', Vishwa International Publications, Gulbarga 1991, 41-68.

[4] G. Grätzer and E. T. Schmidt, On the Jordan-Dedekind chain condition, Acta Sci. Math. 18 (1957), 52-56.

[5] J. Jakubík, On the Jordan-Dedekind chain condition, Acta Sci. Math. 16 (1955), 266-269.

[6] J. Jakubík, A remark on the Jordan-Dedekind chain condition in Boolean algebras (Slovak), Casopis Pest. Mat. 82 (1957), 44-46.

[7] J. Jakubík, On chains in Boolean algebras (Slovak), Mat. Fyz. Casopis SAV 8 (1958), 193-202.

[8] J. Jakubí k, Die Jordan-Dedekindsche Bedingung im direkten Produkt von geordneten Mengen, Acta Sci. Math. 24 (1963), 20-23.

[9] P. Mihók, On graphs critical with respect to generalized independence numbers, Colloq. Math. Soc. J. Bolyai 52 (1987), 417-421.

[10] G.N. Raney, Completely distributive complete lattices, Proc. Amer. Math. Soc. 3 (1952), 677-680.

[11] G.N. Raney, A subdirect-union representation for completely distributive lattices, Proc. Amer. Math. Soc. 4 (1952), 518-522.

[12] G.N. Raney, Tight Galois connection and complete distributivity, Trans. Amer. Math. Soc. 97 (1960), 418-426.

[13] R. Sikorski, Boolean Algebras (the second edition), Springer-Verlag, Berlin 1964.

[14] G. Szász, Generalization of a theorem of Birkhoff concerning maximal chains of a certain type of lattices, Acta Sci. Math. 16 (1955), 89-91.