On the lattice of additive hereditary properties of finite graphs
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 73-86
Voir la notice de l'article provenant de la source Library of Science
In this paper it is proved that the lattice of additive hereditary properties of finite graphs is completely distributive and that it does not satisfy the Jordan-Dedekind condition for infinite chains.
Keywords:
Lattice, complete distributivity, finite graph, additive hereditary property, generalized Jordan-Dedekind condition
@article{DMGAA_2002_22_1_a5,
author = {Jakub{\'\i}k, J\'an},
title = {On the lattice of additive hereditary properties of finite graphs},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {73--86},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a5/}
}
TY - JOUR AU - Jakubík, Ján TI - On the lattice of additive hereditary properties of finite graphs JO - Discussiones Mathematicae. General Algebra and Applications PY - 2002 SP - 73 EP - 86 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a5/ LA - en ID - DMGAA_2002_22_1_a5 ER -
Jakubík, Ján. On the lattice of additive hereditary properties of finite graphs. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 73-86. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a5/