On generalized Hom-functors of certain symmetric monoidal categories
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 47-71

Voir la notice de l'article provenant de la source Library of Science

It is well-known that for each object A of any category C there is the covariant functor H^A: C → Set, where H^A(X) is the set C[A,X] of all morphisms out of A into X in C for an arbitrary object X ∈ |C| and H^A(φ), φ ∈ C[X,Y], is the total function from C[A,X] into C[A,Y] defined by C[A,X] ∋ u → uφ ∈ C[A,Y].
Keywords: symmetric monoidal category, monoidal functor, Hom-functor
@article{DMGAA_2002_22_1_a4,
     author = {Vogel, Hans},
     title = {On generalized {Hom-functors} of certain symmetric monoidal categories},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {47--71},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a4/}
}
TY  - JOUR
AU  - Vogel, Hans
TI  - On generalized Hom-functors of certain symmetric monoidal categories
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2002
SP  - 47
EP  - 71
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a4/
LA  - en
ID  - DMGAA_2002_22_1_a4
ER  - 
%0 Journal Article
%A Vogel, Hans
%T On generalized Hom-functors of certain symmetric monoidal categories
%J Discussiones Mathematicae. General Algebra and Applications
%D 2002
%P 47-71
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a4/
%G en
%F DMGAA_2002_22_1_a4
Vogel, Hans. On generalized Hom-functors of certain symmetric monoidal categories. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 47-71. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a4/