On generalized Hom-functors of certain symmetric monoidal categories
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 47-71.

Voir la notice de l'article provenant de la source Library of Science

It is well-known that for each object A of any category C there is the covariant functor H^A: C → Set, where H^A(X) is the set C[A,X] of all morphisms out of A into X in C for an arbitrary object X ∈ |C| and H^A(φ), φ ∈ C[X,Y], is the total function from C[A,X] into C[A,Y] defined by C[A,X] ∋ u → uφ ∈ C[A,Y].
Keywords: symmetric monoidal category, monoidal functor, Hom-functor
@article{DMGAA_2002_22_1_a4,
     author = {Vogel, Hans},
     title = {On generalized {Hom-functors} of certain symmetric monoidal categories},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {47--71},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a4/}
}
TY  - JOUR
AU  - Vogel, Hans
TI  - On generalized Hom-functors of certain symmetric monoidal categories
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2002
SP  - 47
EP  - 71
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a4/
LA  - en
ID  - DMGAA_2002_22_1_a4
ER  - 
%0 Journal Article
%A Vogel, Hans
%T On generalized Hom-functors of certain symmetric monoidal categories
%J Discussiones Mathematicae. General Algebra and Applications
%D 2002
%P 47-71
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a4/
%G en
%F DMGAA_2002_22_1_a4
Vogel, Hans. On generalized Hom-functors of certain symmetric monoidal categories. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 47-71. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a4/

[1] S. Eilenberg and G.M. Kelly, Closed categories, 'The Proceedings of the Confference on Categorical Algebra (La Jolla, 1965)', Springer-Verlag, New York 1966, 421-562.

[2] H.-J. Hoehnke, On Partial Algebras, 'Universal Algebra (Esztergom (Hungary) 1977)', Colloq. Soc. J. Bolyai, Vol. 29, North-Holland,Amsterdam 1981, 373-412.

[3] J. Schreckenberger, Über die Einbettung von dht-symmetrischen Kategorien in die Kategorie der partiellen Abbildungen zwischen Mengen, Preprint P-12/80, Zentralinst. f. Math., Akad. d. Wiss. d. DDR. Berlin 1980.

[4] J. Schreckenberger, Zur Theorie der dht-symmetrischen Kategorien, Diss. (B), Päd. Hochschule Potsdam, Math.-Naturwiss. Fak., Potsdam 1984.

[5] H.-J. Vogel, Eine Beschreibung von Verknüpfungen für partielle Funktionen, Rostock. Math. Kolloq. 20 (1982), 212-232.

[6] H.-J. Vogel, Eine kategorientheoretische Sprache zur Beschreibung von Birkhoff-Algebren, Report R-Math-06/84, Inst. f. Math., Akad. d. Wiss. d. DDR, Berlin 1984.

[7] H.-J. Vogel, On morphisms between partial algebras, 'Proceedings of the 21-st Summer School Applications of Mathematics in Engineering and Business (September 1995)', Varna 1995.

[8] H.-J. Vogel, On functors between dht∇-symmetric categories, Discuss. Math.- Algebra Stochastic Methods 18 (1998), 131-147.

[9] H.-J. Vogel, On Properties of dht∇-symmetric categories, Contributions to General Algebra 11 (1999), 211-223.