Balanced d-lattices are complemented
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 33-37.

Voir la notice de l'article provenant de la source Library of Science

We characterize d-lattices as those bounded lattices in which every maximal filter/ideal is prime, and we show that a d-lattice is complemented iff it is balanced iff all prime filters/ideals are maximal.
Keywords: balanced congruence, balanced lattice, d-lattice, prime ideal, maximal ideal
@article{DMGAA_2002_22_1_a2,
     author = {Goldstern, Martin and Plo\v{s}\v{c}ica, Miroslav},
     title = {Balanced d-lattices are complemented},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {33--37},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a2/}
}
TY  - JOUR
AU  - Goldstern, Martin
AU  - Ploščica, Miroslav
TI  - Balanced d-lattices are complemented
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2002
SP  - 33
EP  - 37
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a2/
LA  - en
ID  - DMGAA_2002_22_1_a2
ER  - 
%0 Journal Article
%A Goldstern, Martin
%A Ploščica, Miroslav
%T Balanced d-lattices are complemented
%J Discussiones Mathematicae. General Algebra and Applications
%D 2002
%P 33-37
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a2/
%G en
%F DMGAA_2002_22_1_a2
Goldstern, Martin; Ploščica, Miroslav. Balanced d-lattices are complemented. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 33-37. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a2/

[1] I. Chajda and G. Eigenthaler, Balanced congruences, Discuss. Math. - Gen. Algebra App. 21 (2001), 105-114.

[2] G. Grätzer, General Lattice Theory (the second edition), Birkhäuser Verlag, Basel 1998.