Completion of a half linearly cyclically ordered group
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 5-23.

Voir la notice de l'article provenant de la source Library of Science

The notion of a half lc-group G is a generalization of the notion of a half linearly ordered group. A completion of G by means of Dedekind cuts in linearly ordered sets and applying Świerczkowski's representation theorem of lc-groups is constructed and studied.
Keywords: dedekind cut, cyclically ordered group, lc-group, half lc-group, completion of a half lc-group
@article{DMGAA_2002_22_1_a0,
     author = {\v{C}ern\'ak, \v{S}tefan},
     title = {Completion of a half linearly cyclically ordered group},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {5--23},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a0/}
}
TY  - JOUR
AU  - Černák, Štefan
TI  - Completion of a half linearly cyclically ordered group
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2002
SP  - 5
EP  - 23
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a0/
LA  - en
ID  - DMGAA_2002_22_1_a0
ER  - 
%0 Journal Article
%A Černák, Štefan
%T Completion of a half linearly cyclically ordered group
%J Discussiones Mathematicae. General Algebra and Applications
%D 2002
%P 5-23
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a0/
%G en
%F DMGAA_2002_22_1_a0
Černák, Štefan. Completion of a half linearly cyclically ordered group. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 5-23. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a0/

[1] Š. Černák, On the completion of cyclically ordered groups, Math. Slovaca 41 (1991), 41-49.

[2] M. Giraudet and F. Lucas, Groupes à moitié ordonnés, Fund. Math. 139 (1991), 75-89.

[3] J. Jakubík, On half cyclically ordered groups, Czechoslovak Math. J. (to appear).

[4] J. Jakubík and Š. Černák, Completion of a cyclically ordered group, Czechoslovak Math. J. 37 (112) (1987), 157-174.

[5] V. Novák, Cuts in cyclically ordered sets, Czechoslovak Math. J. 34 (109) (1984), 322-333.

[6] V. Novák and M. Novotný, On completion of cyclically ordered sets, Czechoslovak Math. J. 37 (112) (1987), 407-414.

[7] A. Quilliot, Cyclic orders, Europan J. Combin. 10 (1989), 477-488.

[8] L. Rieger, On ordered and cyclically ordered groups. I, II, and III, (Czech), Věstník Královské České Společnosti Nauk. Třida Matemat.-Přirodovĕd. 1946, no. 6, p. 1-31, 1947, no 1, p. 1-33, 1948, no. 1, p. 1-26.

[9] S. Świerczkowski, On cyclically ordered groups, Fundamenta Math. 47 (1959), 161-166.