Congruence classes in Brouwerian semilattices
Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 2, pp. 229-237.

Voir la notice de l'article provenant de la source Library of Science

Brouwerian semilattices are meet-semilattices with 1 in which every element a has a relative pseudocomplement with respect to every element b, i. e. a greatest element c with a∧c ≤ b. Properties of classes of reflexive and compatible binary relations, especially of congruences of such algebras are described and an abstract characterization of congruence classes via ideals is obtained.
Keywords: congruence class, Brouwerian semilattice, ideal
@article{DMGAA_2001_21_2_a7,
     author = {Chajda, Ivan and L\"anger, Helmut},
     title = {Congruence classes in {Brouwerian} semilattices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {229--237},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a7/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Länger, Helmut
TI  - Congruence classes in Brouwerian semilattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2001
SP  - 229
EP  - 237
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a7/
LA  - en
ID  - DMGAA_2001_21_2_a7
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Länger, Helmut
%T Congruence classes in Brouwerian semilattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2001
%P 229-237
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a7/
%G en
%F DMGAA_2001_21_2_a7
Chajda, Ivan; Länger, Helmut. Congruence classes in Brouwerian semilattices. Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 2, pp. 229-237. http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a7/

[1] J. Duda, Arithmeticity at 0, Czechoslovak Math. J. 37 (1987), 197-206.

[2] K. Fichtner, Eine Bemerkung über Mannigfaltigkeiten universeller Algebren mit Idealen, Monatsb. Deutsch. Akad. Wiss. Berlin 12 (1970), 21-25.

[3] P. Köhler, Brouwerian semilattices: the lattice of total subalgebras, Banach Center Publ. 9 (1982), 47-56.

[4] W.C. Nemitz, Implicative semi-lattices, Trans. Amer. Math. Soc. 117 (1965), 128-142.