Congruence classes in Brouwerian semilattices
Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 2, pp. 229-237
Cet article a éte moissonné depuis la source Library of Science
Brouwerian semilattices are meet-semilattices with 1 in which every element a has a relative pseudocomplement with respect to every element b, i. e. a greatest element c with a∧c ≤ b. Properties of classes of reflexive and compatible binary relations, especially of congruences of such algebras are described and an abstract characterization of congruence classes via ideals is obtained.
Keywords:
congruence class, Brouwerian semilattice, ideal
@article{DMGAA_2001_21_2_a7,
author = {Chajda, Ivan and L\"anger, Helmut},
title = {Congruence classes in {Brouwerian} semilattices},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {229--237},
year = {2001},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a7/}
}
TY - JOUR AU - Chajda, Ivan AU - Länger, Helmut TI - Congruence classes in Brouwerian semilattices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2001 SP - 229 EP - 237 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a7/ LA - en ID - DMGAA_2001_21_2_a7 ER -
Chajda, Ivan; Länger, Helmut. Congruence classes in Brouwerian semilattices. Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 2, pp. 229-237. http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a7/
[1] J. Duda, Arithmeticity at 0, Czechoslovak Math. J. 37 (1987), 197-206.
[2] K. Fichtner, Eine Bemerkung über Mannigfaltigkeiten universeller Algebren mit Idealen, Monatsb. Deutsch. Akad. Wiss. Berlin 12 (1970), 21-25.
[3] P. Köhler, Brouwerian semilattices: the lattice of total subalgebras, Banach Center Publ. 9 (1982), 47-56.
[4] W.C. Nemitz, Implicative semi-lattices, Trans. Amer. Math. Soc. 117 (1965), 128-142.