Minimal formations of universal algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 2, pp. 201-205.

Voir la notice de l'article provenant de la source Library of Science

A class ℱ of universal algebras is called a formation if the following conditions are satisfied: 1) Any homomorphic image of A ∈ ℱ is in ℱ; 2) If α₁, α₂ are congruences on A and A/α_i ∈ ℱ, i = 1,2, then A/(α₁∩α₂) ∈ ℱ. We prove that any formation generated by a simple algebra with permutable congruences is minimal, and hence any formation containing a simple algebra, with permutable congruences, contains a minimum subformation. This result gives a partial answer to an open problem of Shemetkov and Skiba on formations of finite universal algebras proposed in 1989.
Keywords: universal algebra, congruence, formation, minimal subformation
@article{DMGAA_2001_21_2_a4,
     author = {Guo, Wenbin and Shum, K.},
     title = {Minimal formations of universal algebras},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {201--205},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a4/}
}
TY  - JOUR
AU  - Guo, Wenbin
AU  - Shum, K.
TI  - Minimal formations of universal algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2001
SP  - 201
EP  - 205
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a4/
LA  - en
ID  - DMGAA_2001_21_2_a4
ER  - 
%0 Journal Article
%A Guo, Wenbin
%A Shum, K.
%T Minimal formations of universal algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2001
%P 201-205
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a4/
%G en
%F DMGAA_2001_21_2_a4
Guo, Wenbin; Shum, K. Minimal formations of universal algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 2, pp. 201-205. http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a4/

[1] L.A. Artamonov, V.N. Sali, L.A. Skorniakov, L.N. Shevrin and E.G. Shulgeifer, General Algebra (Russian), vol. II, Izd. 'Nauka', Moscow 1991.

[2] D.W. Barnes, Saturated formations of soluable Lie algebras in characteristic zero, Arch. Math., 30 (1978), 477-480.

[3] D.W. Barnes and H.M. Gastineau-Hills, On the theory of soluble Lie algebras, Math. Z., 106 (1969), 343-353.

[4] K. Doerk and T.O. Hawkes, Finite soluable groups, Walter de Gruyter Co., Berlin 1992.

[5] A.I. Mal˘cev, Algebraic systems (Russian), Izd. 'Nauka', Moscow 1970.

[6] L.A. Shemetkov, Formations of finite groups (Russian), Izd. 'Nauka', Moscow 1978.

[7] L.A. Shemetkov, The product of any formation of algebraic systems (Russian), Algebra i Logika, 23 (1984), 721-729. (English transl.: Algebra and Logic 23 (1985), 489-490).

[8] L.A. Shemetkov and A.N. Skiba, Formations of algebraic systems (Russian), Izd. 'Nauka', Moscow 1989.