The semantical hyperunification problem
Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 2, pp. 175-200.

Voir la notice de l'article provenant de la source Library of Science

A hypersubstitution of a fixed type τ maps n-ary operation symbols of the type to n-ary terms of the type. Such a mapping induces a unique mapping defined on the set of all terms of type t. The kernel of this induced mapping is called the kernel of the hypersubstitution, and it is a fully invariant congruence relation on the (absolutely free) term algebra F_τ(X) of the considered type ([2]). If V is a variety of type τ, we consider the composition of the natural homomorphism with the mapping induced by a hypersubstitution. The kernel of this mapping is called the semantical kernel of the hypersubstitution with respect to the given variety. If the pair (s,t) of terms belongs to the semantical kernel of a hypersubstitution, then this hypersubstitution equalizes s and t with respect to the variety. Generalizing the concept of a unifier, we define a semantical hyperunifier for a pair of terms with respect to a variety. The problem of finding a semantical hyperunifier with respect to a given variety for any two terms is then called the semantical hyperunification problem.
Keywords: hypersubstitution, fully invariant congruence relation, hyperunification problem
@article{DMGAA_2001_21_2_a3,
     author = {Denecke, Klaus and Koppitz, J\"org and Wismath, Shelly},
     title = {The semantical hyperunification problem},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {175--200},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a3/}
}
TY  - JOUR
AU  - Denecke, Klaus
AU  - Koppitz, Jörg
AU  - Wismath, Shelly
TI  - The semantical hyperunification problem
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2001
SP  - 175
EP  - 200
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a3/
LA  - en
ID  - DMGAA_2001_21_2_a3
ER  - 
%0 Journal Article
%A Denecke, Klaus
%A Koppitz, Jörg
%A Wismath, Shelly
%T The semantical hyperunification problem
%J Discussiones Mathematicae. General Algebra and Applications
%D 2001
%P 175-200
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a3/
%G en
%F DMGAA_2001_21_2_a3
Denecke, Klaus; Koppitz, Jörg; Wismath, Shelly. The semantical hyperunification problem. Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 2, pp. 175-200. http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a3/

[1] K. Denecke, J. Hyndman and S.L. Wismath, The Galois correspondence between subvariety lattices and monoids of hypersubstitutions, Discuss.Math. - Gen. Algebra Appl. 20 (2000), 21-36.

[2] K. Denecke, J. Koppitz and St. Niwczyk, Equational Theories generated by Hypersubstitutions of Type (n), Internat. J. Algebra Comput., in print.

[3] K. Denecke and S.L. Wismath, The monoid of hypersubstitutions of type (2), Contributions to General Algebra 10 (1998), 109-126.

[4] K. Denecke and S.L. Wismath, Hyperidentities and Clones, Gordon and Breach Sci. Publ., Amsterdam 2000.

[5] J. Płonka, Proper and inner hypersubstitutions of varieties, 'Proccedings of the International Conference 'Summer School on Algebra and Ordered Sets', Olomouc 1994, Palacký University, Olomouc 1994, 106-116.

[6] J.H. Siekmann, Universal Unification, Lecture Notes in Computer Science, no. 170 ('International Conference on Automated Deductions (Napa, CA, 1984)'), Springer-Verlag, Berlin 1984, 1-42.