On the structure of halfdiagonal-halfterminal-symmetric categories with diagonal inversions
Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 2, pp. 139-163.

Voir la notice de l'article provenant de la source Library of Science

The category of all binary relations between arbitrary sets turns out to be a certain symmetric monoidal category Rel with an additional structure characterized by a family d = (d_A: A → A⨂ A | A ∈ |Rel|) of diagonal morphisms, a family t = (t_A: A → I | A ∈ |Rel|) of terminal morphisms, and a family ∇ = (∇_A: A ⨂ A → A | A ∈ |Rel|) of diagonal inversions having certain properties. Using this properties in [11] was given a system of axioms which characterizes the abstract concept of a halfdiagonal-halfterminal-symmetric monoidal category with diagonal inversions (hdht∇s-category). Besides of certain identities this system of axioms contains two identical implications. In this paper is shown that there is an equivalent characterizing system of axioms for hdht∇s-categories consisting of identities only. Therefore, the class of all small hdht∇-symmetric categories (interpreted as hetrogeneous algebras of a certain type) forms a variety and hence there are free theories for relational structures.
Keywords: halfdiagonal-halfterminal-symmetric category, diagonal inversion, partial order relation, subidentity, equation
@article{DMGAA_2001_21_2_a1,
     author = {Vogel, Hans-J\"urgen},
     title = {On the structure of halfdiagonal-halfterminal-symmetric categories with diagonal inversions},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {139--163},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a1/}
}
TY  - JOUR
AU  - Vogel, Hans-Jürgen
TI  - On the structure of halfdiagonal-halfterminal-symmetric categories with diagonal inversions
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2001
SP  - 139
EP  - 163
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a1/
LA  - en
ID  - DMGAA_2001_21_2_a1
ER  - 
%0 Journal Article
%A Vogel, Hans-Jürgen
%T On the structure of halfdiagonal-halfterminal-symmetric categories with diagonal inversions
%J Discussiones Mathematicae. General Algebra and Applications
%D 2001
%P 139-163
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a1/
%G en
%F DMGAA_2001_21_2_a1
Vogel, Hans-Jürgen. On the structure of halfdiagonal-halfterminal-symmetric categories with diagonal inversions. Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 2, pp. 139-163. http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a1/

[1] L. B and H.-J. H, Automaten und Funktoren, Akademie-Verlag, Berlin 1975.

[2] S. E and G.M. K, Closed categories, 'Proceedings of the Conference on Categorical Algebra (La Jolla, 1965)', Springer-Verlag, New York 1966, 421-562.

[3] H.-J. H, On partial algebras, Colloquia Mathematica Societatis János Bolyai, 29 ('Universal Algebra, Esztergom (Hungary) 1977'), North-Holland, Amsterdam 1981, 373-412.

[4] G.M. K, On MacLane's condition for coherence of natural associativities, commutativities, etc, J. Algebra 1 (1964), 397-402.

[5] S. M, Kategorien, Begriffssprache und mathematische Theorie, Springer-Verlag, Berlin-New York 1972.

[6] J. S, Über dht-symmetrische Kategorien, Semesterarbeit Päd. Hochschule Köthen, Köthen 1978.

[7] J. S, Über die Einbettung von dht-symmetrischen Kategorien in die Kategorie der partiellen Abbildungen zwischen Mengen, AdW DDR Berlin, Zentralinstitut f. Mathematik und Mechanik, Preprint P-12/8 (1980).

[8] J. S, Zur Theorie der dht-symmetrischen Kategorien, Dissertation (B), eingereicht an der Math.-Naturwiss. Fak. d. Wiss. Rates d. Pädag. Hochschule 'Karl Liebknecht', Potsdam 1984.

[9] J. S, Zur Axiomatik von Kategorien partieller Morphismen, Beiträge Algebra Geom. (Halle/Saale) 24 (1987), 83-98.

[10] H.-J. V, Eine kategorientheoretische Sprache zur Beschreibung von Birkhoff-Algebren, AdW DDR, Institut f. Mathematik, Report R-MATH-06/84, Berlin (1984).

[11] H.-J. V, Relations as morphisms of a certain monoidal category, 'General Algebra and Applications in Discrete Mathematics', Shaker Verlag, Aachen 1997, 205-217.

[12] H.-J. V, On functors between dhtŃ-symmetric categories, Discuss. Math. - Algebra Stochastic Methods 18 (1998), 131-147.

[13] H.-J. V, On Properties of dhtŃ-symmetric categories, Contributions to General Algebra 11 (1999), 211-223.

[14] H.-J. V, Halfdiagonal-halfterminal-symmetric monoidal categories with inversions, 'General Algebra and Discrete Mathematics', Shaker Verlag, Aachen 1999, 189-204.

[15] H.-J. V, On morphisms between prtial algebras, 'Algebras and Combinatorics. An International Congress, ICAC '97, Hong Kong', Springer-Verlag, Singapore 1999, 427-453.