Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2001_21_1_a7, author = {Chajda, Ivan and L\"anger, Helmut}, title = {Hypersubstitutions in orthomodular lattices}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {83--92}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a7/} }
TY - JOUR AU - Chajda, Ivan AU - Länger, Helmut TI - Hypersubstitutions in orthomodular lattices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2001 SP - 83 EP - 92 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a7/ LA - en ID - DMGAA_2001_21_1_a7 ER -
Chajda, Ivan; Länger, Helmut. Hypersubstitutions in orthomodular lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 1, pp. 83-92. http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a7/
[1] I. Chajda and K. Głazek, A Basic Course on General Algebra, Technical University Press, Zielona Góra 2000.
[2] K. Denecke, D. Lau, R. Pöschel, and D. Schweigert, Hyperidentities, hyperequational classes and clone congruences, Contribution to General Algebra 7 (1991), 97-118.
[3] E. Graczyńska and D. Schweigert, Hypervarieties of a given type, Algebra Universalis 27 (1990), 305-318.
[4] R. Padmanabhan and P. Penner, Bases of hyperidentities of lattices, C.R. Math. Rep. Acad. Sci. Canada 4 (1982), 9-14.
[5] J. Płonka, Proper and inner hypersubstitutions of varieties, 'General Algebra and Ordered Sets (Horni Lipová 1994)', Palacký University, Olomouc 1994, 106-115.
[6] J. Płonka, On hyperidentities of some varieties, 'General Algebra and Discrete Mathematics (Potsdam 1993)', Heldermann-Verlag, Lemgo 1995, 199-213.
[7] Z. Szylicka, Proper hypersubstitutions of normalizations and externalizations of varieties, 'General Algebra and Ordered Sets (Horni Lipová 1994)', Palacký University, Olomouc 1994, 144-155.
[8] W. Taylor, Hyperidentities and hypervarieties, Aequationes Math. 23 (1981), 30-49.