Some properties of congurence relations on orthomodular lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 1, pp. 57-66
Cet article a éte moissonné depuis la source Library of Science
In this paper congruences on orthomodular lattices are studied with particular regard to analogies in Boolean algebras. For this reason the lattice of p-ideals (corresponding to the congruence lattice) and the interplay between congruence classes is investigated. From the results adduced there, congruence regularity, uniformity and permutability for orthomodular lattices can be derived easily.
Keywords:
orthomodular lattice, congruence relation, congruence-regular, congruence-uniform, congruence-permutable
@article{DMGAA_2001_21_1_a5,
author = {Dorfer, Gerhard},
title = {Some properties of congurence relations on orthomodular lattices},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {57--66},
year = {2001},
volume = {21},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a5/}
}
TY - JOUR AU - Dorfer, Gerhard TI - Some properties of congurence relations on orthomodular lattices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2001 SP - 57 EP - 66 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a5/ LA - en ID - DMGAA_2001_21_1_a5 ER -
Dorfer, Gerhard. Some properties of congurence relations on orthomodular lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 1, pp. 57-66. http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a5/
[1] L. Beran, Orthomodular Lattices, D. Reidel Publishing Company, Dordrecht-Boston 1985.
[2] R.P. Dilworth, The structure of relatively complemented lattices, Ann. of Math. 51 (1950), 348-359.
[3] P.D. Finch, Congruence relations on orthomodular lattices, J. Austral. Math. Soc. 6 (1966), 46-54.
[4] J. Hashimoto, Congruence relations and congruence classes in lattices, Osaka Math. J. 15 (1963), 71-86.
[5] G. Kalmbach, Orthomodular Lattices, Academic Press, London 1983.
[6] T. Katrinák, Die Kennzeichnung der distributiven pseudokomplementären Halbverbände, J. Reine Angew. Math. 241 (1970), 160-179.
[7] P. Pták and S. Pulmannová, Orthomodular Structures as Quantum Logics, Kluwer Academic Publishers, Dordrecht 1991.