Cantor extension of a half lineary cyclically ordered group
Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 1, pp. 31-46.

Voir la notice de l'article provenant de la source Library of Science

Convergent and fundamental sequences are studied in a half linearly cyclically ordered group G with the abelian increasing part. The main result is the construction of the Cantor extension of G.
Keywords: convergent sequence, fundamental sequence, C-complete half lc-group, Cantor extension of a half lc-group
@article{DMGAA_2001_21_1_a3,
     author = {\v{C}ern\'ak, \v{S}tefan},
     title = {Cantor extension of a half lineary cyclically ordered group},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {31--46},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a3/}
}
TY  - JOUR
AU  - Černák, Štefan
TI  - Cantor extension of a half lineary cyclically ordered group
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2001
SP  - 31
EP  - 46
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a3/
LA  - en
ID  - DMGAA_2001_21_1_a3
ER  - 
%0 Journal Article
%A Černák, Štefan
%T Cantor extension of a half lineary cyclically ordered group
%J Discussiones Mathematicae. General Algebra and Applications
%D 2001
%P 31-46
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a3/
%G en
%F DMGAA_2001_21_1_a3
Černák, Štefan. Cantor extension of a half lineary cyclically ordered group. Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 1, pp. 31-46. http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a3/

[1] S. Cernák, Cantor extension of an abelian cyclically ordered group, Math. Slovaca 39 (1989), 31-41.

[2] C.J. Everett, Sequence completion of lattice moduls, Duke Math. J. 11 (1944), 109-119.

[3] M. Giraudet and F. Lucas, Groupe a moitié ordonnés, Fund. Math. 139 (1991), 75-89.

[4] J. Jakubík and G. Pringerová, Representations of cyclically ordered groups, Casopis pest. Mat. 113 (1988), 184-196.

[5] J. Jakubík and G. Pringerová, Radical classes of cyclically ordered groups, Math. Slovaca 38 (1988), 255-268.

[6] J. Jakubík, On half lattice ordered groups, Czechoslovak Math. J. 46 (1996), 745-767.

[7] J. Jakubík, Lexicographic products of half linearly ordered groups, Czechoslovak Math. J. 51 (2001), 127-138.

[8] J. Jakubík, On half cyclically ordered groups, Czechoslovak Math. J. (toappear).

[9] V. Novák, Cuts in cyclically ordered sets, Czechoslovak Math. J. 34 (1984), 322-333.

[10] V. Novák and M. Novotný, On representations of cyclically ordered sets, Czechoslovak Math. J. 39 (1989), 127-132.

[11] A. Quilot, Cyclic orders, European J. Combin. 10 (1989), 477-488.

[12] L. Rieger, On ordered and cyclically ordered groups I., II.,III, Vestník Král. Ceske spol. Nauk (Czech), 1946, 1-31; 1947, 1-33; 1948, 1-26.

[13] S. Świerczkowski, On cyclically ordered groups, Fund. Math. 47 (1959), 161-166.

[14] D.R. Ton, Torsion classes and torsion prime selectors of hl-groups, Math. Slovaca 50 (2000), 31-40.