Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2001_21_1_a10, author = {Slez\'ak, Vladim{\'\i}r}, title = {On the special context of independent sets}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {115--122}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a10/} }
Slezák, Vladimír. On the special context of independent sets. Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 1, pp. 115-122. http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a10/
[1] V. Dlab, Lattice formulation of general algebraic dependence, Czechoslovak Math. Journal 20 (1970), 603-615.
[2] B. Ganter, R. Wille, Formale Begriffsanalyse - Mathematische Grundlagen, Springer-Verlag, Berlin 1996. (English version: 1999).
[3] K. Głazek, Some old and new problems in the independence theory, Colloq. Math. 42 (1979), 127-189.
[4] G. Gratzer, General Lattice Theory, Birkhäuser-Verlag, Basel 1998.
[5] F. Machala, Incidence structures of independent sets, Acta Univ. Palacki Olomuc., Fac. Rerum Natur., Math. 38 (1999), 113-118.
[6] F. Machala, Join-independent and meet-independent sets in complete lattices, Order (submitted).
[7] E. Marczewski, Concerning the independence in lattices, Colloq. Math. 10 (1963), 21-23.
[8] V. Slezák, Span in incidence structures defined on projective spaces, Acta Univ. Palack. Olomuc., Fac. Rerum Natur., Mathematica 39 (2000), 191-202.
[9] G. Szász, Introduction to Lattice Theory, Akadémiai Kiadó, Budapest 1963.
[10] G. Szász, Marczewski independence in lattices and semilattices, Colloq. Math. 10 (1963), 15-20.