Relatively complemented ordered sets
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 207-217.

Voir la notice de l'article provenant de la source Library of Science

We investigate conditions for the existence of relative complements in ordered sets. For relatively complemented ordered sets with 0 we show that each element b ≠ 0 is the least one of the set of all upper bounds of all atoms contained in b.
Keywords: modular ordered set, complemented, relatively complemented ordered set, atom
@article{DMGAA_2000_20_2_a5,
     author = {Chajda, Ivan and Mor\'avkov\'a, Zuzana},
     title = {Relatively complemented ordered sets},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {207--217},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a5/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Morávková, Zuzana
TI  - Relatively complemented ordered sets
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2000
SP  - 207
EP  - 217
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a5/
LA  - en
ID  - DMGAA_2000_20_2_a5
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Morávková, Zuzana
%T Relatively complemented ordered sets
%J Discussiones Mathematicae. General Algebra and Applications
%D 2000
%P 207-217
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a5/
%G en
%F DMGAA_2000_20_2_a5
Chajda, Ivan; Morávková, Zuzana. Relatively complemented ordered sets. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 207-217. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a5/

[1] I. Chajda, Complemented ordered sets, Arch. Math. (Brno) 28 (1992), 25-34.

[2] I. Chajda and J. Rach23 unek, Forbidden configurations for distributive andmodular ordered sets, Order 5 (1989), 407-423.

[3] R. Halas, Pseudocomplemented ordered sets, Arch. Math. (Brno) 29 (1993), 153-160.

[4] J. Niederle, Boolean and distributive ordered sets, Order 12 (1995), 189-210.

[5] J. Rach23 unek and J. Larmerová, Translations of modular and distributive ordered sets, Acta Univ. Palacký Olomouc, Fac. Rerum Nat., Math., 31 (1988), 13-23.

[6] V.N. Salij, Lettices with Unique Complementations (Russian), Nauka, Moskva 1984.