Some classes of Diophantine equations connected with McFarland's and Ma's conjectures
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 193-198.

Voir la notice de l'article provenant de la source Library of Science

In this paper we consider some special classes of Diophantine equations connected with McFarland's and Ma's conjectures about difference sets in abelian groups and we obtain an extension of known results.
Keywords: difference sets, diophantine equations, Pell's equations
@article{DMGAA_2000_20_2_a3,
     author = {Cao, Zhenfu and Grytczuk, Aleksander},
     title = {Some classes of {Diophantine} equations connected with {McFarland's} and {Ma's} conjectures},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {193--198},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a3/}
}
TY  - JOUR
AU  - Cao, Zhenfu
AU  - Grytczuk, Aleksander
TI  - Some classes of Diophantine equations connected with McFarland's and Ma's conjectures
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2000
SP  - 193
EP  - 198
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a3/
LA  - en
ID  - DMGAA_2000_20_2_a3
ER  - 
%0 Journal Article
%A Cao, Zhenfu
%A Grytczuk, Aleksander
%T Some classes of Diophantine equations connected with McFarland's and Ma's conjectures
%J Discussiones Mathematicae. General Algebra and Applications
%D 2000
%P 193-198
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a3/
%G en
%F DMGAA_2000_20_2_a3
Cao, Zhenfu; Grytczuk, Aleksander. Some classes of Diophantine equations connected with McFarland's and Ma's conjectures. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 193-198. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a3/

[1] K.T. Arasu, Recent results on difference sets, 'Coding Theory and Design Theory', Part II, Springer-Verlag, Berlin-New York 1990, 1-23.

[2] Z. Cao, Some Diophantine equations in difference sets, a lecture, '5-th National Combinatorial Mathematics Conference', Shanghai 1994.

[3] Z. Cao, 'Introduction to Diophantine equations' (Chinese), Harbin Inst. of Technology Press, Harbin 1989.

[4] Z. Cao, On the equation $ax^{m}-by^{n} = 2$, Chinese Sci. Bull. 35 (1990), 1227-1228.

[5] Z. Cao, On the Diophantine equation $(ax^{m}-4c)/(abx-4c) = by²$ (Chinese), J. Harbin Inst. Tech. 23 (1991), suppl, 110-112.

[6] G. Degert, Über die Bestimung der Grundeinheit gewisser reell-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg 22 (1958), 92-97.

[7] Y.-D. Guo, On the exponential Diophantine equation $x² = 2^{2a}k^{2m} - 2^{2a}k^{m+n} + 1$, Discuss. Math.- Algebra Stochastic Methods 16 (1996), 57-60.

[8] S.L. Ma, McFarland's conjecture on abelian difference sets with multiplier -1, Des. Codes Cryptogr. 1 (1992), 321-332.

[9] L.J. Mordell, 'Diophantine Eqations', Academic Press, London 1969.

[10] C. Richaud, Sur la résolution des équations x² - Ay² = ±, Atti Acad. Pontif. Nuovi Lincei, 1866, 177-182.

[11] C. Strømer, Quelques theorems sur l'equation de Pell x² - Dy² = ±1 et leur applications, Skr. Norske Vid. Acad., I Selsk. Mat. Natur. Kl., No. 2 (1897), 48 pp.