Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2000_20_2_a3, author = {Cao, Zhenfu and Grytczuk, Aleksander}, title = {Some classes of {Diophantine} equations connected with {McFarland's} and {Ma's} conjectures}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {193--198}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a3/} }
TY - JOUR AU - Cao, Zhenfu AU - Grytczuk, Aleksander TI - Some classes of Diophantine equations connected with McFarland's and Ma's conjectures JO - Discussiones Mathematicae. General Algebra and Applications PY - 2000 SP - 193 EP - 198 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a3/ LA - en ID - DMGAA_2000_20_2_a3 ER -
%0 Journal Article %A Cao, Zhenfu %A Grytczuk, Aleksander %T Some classes of Diophantine equations connected with McFarland's and Ma's conjectures %J Discussiones Mathematicae. General Algebra and Applications %D 2000 %P 193-198 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a3/ %G en %F DMGAA_2000_20_2_a3
Cao, Zhenfu; Grytczuk, Aleksander. Some classes of Diophantine equations connected with McFarland's and Ma's conjectures. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 193-198. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a3/
[1] K.T. Arasu, Recent results on difference sets, 'Coding Theory and Design Theory', Part II, Springer-Verlag, Berlin-New York 1990, 1-23.
[2] Z. Cao, Some Diophantine equations in difference sets, a lecture, '5-th National Combinatorial Mathematics Conference', Shanghai 1994.
[3] Z. Cao, 'Introduction to Diophantine equations' (Chinese), Harbin Inst. of Technology Press, Harbin 1989.
[4] Z. Cao, On the equation $ax^{m}-by^{n} = 2$, Chinese Sci. Bull. 35 (1990), 1227-1228.
[5] Z. Cao, On the Diophantine equation $(ax^{m}-4c)/(abx-4c) = by²$ (Chinese), J. Harbin Inst. Tech. 23 (1991), suppl, 110-112.
[6] G. Degert, Über die Bestimung der Grundeinheit gewisser reell-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg 22 (1958), 92-97.
[7] Y.-D. Guo, On the exponential Diophantine equation $x² = 2^{2a}k^{2m} - 2^{2a}k^{m+n} + 1$, Discuss. Math.- Algebra Stochastic Methods 16 (1996), 57-60.
[8] S.L. Ma, McFarland's conjecture on abelian difference sets with multiplier -1, Des. Codes Cryptogr. 1 (1992), 321-332.
[9] L.J. Mordell, 'Diophantine Eqations', Academic Press, London 1969.
[10] C. Richaud, Sur la résolution des équations x² - Ay² = ±, Atti Acad. Pontif. Nuovi Lincei, 1866, 177-182.
[11] C. Strømer, Quelques theorems sur l'equation de Pell x² - Dy² = ±1 et leur applications, Skr. Norske Vid. Acad., I Selsk. Mat. Natur. Kl., No. 2 (1897), 48 pp.