The order of normalform hypersubstitutions of type (2)
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 183-192
Cet article a éte moissonné depuis la source Library of Science
In [2] it was proved that all hypersubstitutions of type τ = (2) which are not idempotent and are different from the hypersubstitution whichmaps the binary operation symbol f to the binary term f(y,x) haveinfinite order. In this paper we consider the order of hypersubstitutionswithin given varieties of semigroups. For the theory of hypersubstitution see [3].
Keywords:
hypersubstitutions, terms, idempotent elements, elements of infinite order
@article{DMGAA_2000_20_2_a2,
author = {Denecke, Klaus and Mahdavi, Kazem},
title = {The order of normalform hypersubstitutions of type (2)},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {183--192},
year = {2000},
volume = {20},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a2/}
}
TY - JOUR AU - Denecke, Klaus AU - Mahdavi, Kazem TI - The order of normalform hypersubstitutions of type (2) JO - Discussiones Mathematicae. General Algebra and Applications PY - 2000 SP - 183 EP - 192 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a2/ LA - en ID - DMGAA_2000_20_2_a2 ER -
Denecke, Klaus; Mahdavi, Kazem. The order of normalform hypersubstitutions of type (2). Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 183-192. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a2/
[1] K. Denecke, D. Lau, R. Pöschel, and D. Schweigert, Hyperidentities, hyperequational classes and clone congruences, Contributions to General Algebra 7 (1991), 97-118.
[2] K. Denecke and Sh. Wismath, The Monoid of Hypersubstitutions of Type (2), Contributions to General Algebra, Verlag Johannes Heyn, 10 (1998), 110-126.
[3] K. Denecke and Sh. Wismath, 'Hyperidentities and clones', Gordon and Breach Sci. Publ., Amsterdam-Singapore 2000.
[4] J. Płonka, Proper and inner hypersubstitutions of varieties, 'Proceedings of the International Conference: Summer school on General Algebra and Ordered sets 1994', Palacký University, Olomouc 1994, 106-115.