The order of normalform hypersubstitutions of type (2)
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 183-192.

Voir la notice de l'article provenant de la source Library of Science

In [2] it was proved that all hypersubstitutions of type τ = (2) which are not idempotent and are different from the hypersubstitution whichmaps the binary operation symbol f to the binary term f(y,x) haveinfinite order. In this paper we consider the order of hypersubstitutionswithin given varieties of semigroups. For the theory of hypersubstitution see [3].
Keywords: hypersubstitutions, terms, idempotent elements, elements of infinite order
@article{DMGAA_2000_20_2_a2,
     author = {Denecke, Klaus and Mahdavi, Kazem},
     title = {The order of normalform hypersubstitutions of type (2)},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {183--192},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a2/}
}
TY  - JOUR
AU  - Denecke, Klaus
AU  - Mahdavi, Kazem
TI  - The order of normalform hypersubstitutions of type (2)
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2000
SP  - 183
EP  - 192
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a2/
LA  - en
ID  - DMGAA_2000_20_2_a2
ER  - 
%0 Journal Article
%A Denecke, Klaus
%A Mahdavi, Kazem
%T The order of normalform hypersubstitutions of type (2)
%J Discussiones Mathematicae. General Algebra and Applications
%D 2000
%P 183-192
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a2/
%G en
%F DMGAA_2000_20_2_a2
Denecke, Klaus; Mahdavi, Kazem. The order of normalform hypersubstitutions of type (2). Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 183-192. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a2/

[1] K. Denecke, D. Lau, R. Pöschel, and D. Schweigert, Hyperidentities, hyperequational classes and clone congruences, Contributions to General Algebra 7 (1991), 97-118.

[2] K. Denecke and Sh. Wismath, The Monoid of Hypersubstitutions of Type (2), Contributions to General Algebra, Verlag Johannes Heyn, 10 (1998), 110-126.

[3] K. Denecke and Sh. Wismath, 'Hyperidentities and clones', Gordon and Breach Sci. Publ., Amsterdam-Singapore 2000.

[4] J. Płonka, Proper and inner hypersubstitutions of varieties, 'Proceedings of the International Conference: Summer school on General Algebra and Ordered sets 1994', Palacký University, Olomouc 1994, 106-115.