A factorization of elements in PSL(2, F), where F = Q, R
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 159-167
Voir la notice de l'article provenant de la source Library of Science
Let G be a group and Kₙ = g ∈ G: o(g) = n. It is prowed: (i) if F = ℝ, n ≥ 4, then PSL(2,F) = Kₙ²; (ii) if F = ℚ,ℝ, n = ∞, then PSL(2,F) = Kₙ²; (iii) if F = ℝ, then PSL(2,F) = K₃³; (iv) if F = ℚ,ℝ, then PSL(2,F) = K₂³ ∪ E, E ∉ K₂³, where E denotes the unit matrix; (v) if F = ℚ, then PSL(2,F) ≠ K₃³.
Keywords:
factorization of linear groups, linear groups, matrix representations of groups, sets of elements of the same order in groups
@article{DMGAA_2000_20_2_a0,
author = {Ambrosiewicz, Jan},
title = {A factorization of elements in {PSL(2,} {F),} where {F} = {Q,} {R}},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {159--167},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a0/}
}
TY - JOUR AU - Ambrosiewicz, Jan TI - A factorization of elements in PSL(2, F), where F = Q, R JO - Discussiones Mathematicae. General Algebra and Applications PY - 2000 SP - 159 EP - 167 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a0/ LA - en ID - DMGAA_2000_20_2_a0 ER -
Ambrosiewicz, Jan. A factorization of elements in PSL(2, F), where F = Q, R. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 159-167. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a0/