A factorization of elements in PSL(2, F), where F = Q, R
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 159-167

Voir la notice de l'article provenant de la source Library of Science

Let G be a group and Kₙ = g ∈ G: o(g) = n. It is prowed: (i) if F = ℝ, n ≥ 4, then PSL(2,F) = Kₙ²; (ii) if F = ℚ,ℝ, n = ∞, then PSL(2,F) = Kₙ²; (iii) if F = ℝ, then PSL(2,F) = K₃³; (iv) if F = ℚ,ℝ, then PSL(2,F) = K₂³ ∪ E, E ∉ K₂³, where E denotes the unit matrix; (v) if F = ℚ, then PSL(2,F) ≠ K₃³.
Keywords: factorization of linear groups, linear groups, matrix representations of groups, sets of elements of the same order in groups
@article{DMGAA_2000_20_2_a0,
     author = {Ambrosiewicz, Jan},
     title = {A factorization of elements in {PSL(2,} {F),} where {F} = {Q,} {R}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {159--167},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a0/}
}
TY  - JOUR
AU  - Ambrosiewicz, Jan
TI  - A factorization of elements in PSL(2, F), where F = Q, R
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2000
SP  - 159
EP  - 167
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a0/
LA  - en
ID  - DMGAA_2000_20_2_a0
ER  - 
%0 Journal Article
%A Ambrosiewicz, Jan
%T A factorization of elements in PSL(2, F), where F = Q, R
%J Discussiones Mathematicae. General Algebra and Applications
%D 2000
%P 159-167
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a0/
%G en
%F DMGAA_2000_20_2_a0
Ambrosiewicz, Jan. A factorization of elements in PSL(2, F), where F = Q, R. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 159-167. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a0/