A factorization of elements in PSL(2, F), where F = Q, R
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 159-167.

Voir la notice de l'article provenant de la source Library of Science

Let G be a group and Kₙ = g ∈ G: o(g) = n. It is prowed: (i) if F = ℝ, n ≥ 4, then PSL(2,F) = Kₙ²; (ii) if F = ℚ,ℝ, n = ∞, then PSL(2,F) = Kₙ²; (iii) if F = ℝ, then PSL(2,F) = K₃³; (iv) if F = ℚ,ℝ, then PSL(2,F) = K₂³ ∪ E, E ∉ K₂³, where E denotes the unit matrix; (v) if F = ℚ, then PSL(2,F) ≠ K₃³.
Keywords: factorization of linear groups, linear groups, matrix representations of groups, sets of elements of the same order in groups
@article{DMGAA_2000_20_2_a0,
     author = {Ambrosiewicz, Jan},
     title = {A factorization of elements in {PSL(2,} {F),} where {F} = {Q,} {R}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {159--167},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a0/}
}
TY  - JOUR
AU  - Ambrosiewicz, Jan
TI  - A factorization of elements in PSL(2, F), where F = Q, R
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2000
SP  - 159
EP  - 167
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a0/
LA  - en
ID  - DMGAA_2000_20_2_a0
ER  - 
%0 Journal Article
%A Ambrosiewicz, Jan
%T A factorization of elements in PSL(2, F), where F = Q, R
%J Discussiones Mathematicae. General Algebra and Applications
%D 2000
%P 159-167
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a0/
%G en
%F DMGAA_2000_20_2_a0
Ambrosiewicz, Jan. A factorization of elements in PSL(2, F), where F = Q, R. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 159-167. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a0/

[1] J. Ambrosiewicz, On the property W for the multiplicative group of the quaternions algebra, Studia Univ. Babes-Bolyai Math. 25 (1980), no. 2, 2-3.

[2] J. Ambrosiewicz, The property W² for the multiplicative group of the quaternions field, Studia Univ. Babes-Bolyai Math. 29 (1984), 63-67.

[3] J. Ambrosiewicz, On the square of sets of the group SL(3,F), PSL(3,F), Demonstratio Math. 18 (1985), 963-968.

[4] J. Ambrosiewicz, On square of sets of linear groups, Rend. Sem. Mat. Univ. Padova 75 (1986), 253-256.

[5] J. Ambrosiewicz, Powers of sets in linear group, Demonstratio Math. 23 (1990), 395-403.

[6] J. Ambrosiewicz, Square of set of elements of order two in orthogonal groups, Publ. Math. Debrecen 41 (1992), 189-198.

[7] J. Ambrosiewicz, If K is a real field then cn(PSL(2,K)) = 4, Demonstratio Math. 29 (1996), 783-785.

[8] E.W. Ellers, Bireflectionality in classical groups, Canad. J. Math. 29 (1977), 1157-1162.

[9] E.W. Ellers, R. Frank, and W. Nolte, Bireflectionality of the weak orthogonal and the weak sympletic groups, J. Algebra 88 (1984), 63-67.