The positive and generalized discriminators don't exist
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 121-128.

Voir la notice de l'article provenant de la source Library of Science

In this paper it is proved that there does not exist a function for the language of positive and generalized conditional terms that behaves the same as the discriminator for the language of conditional terms.
Keywords: discriminator function, positive conditional term, generalized conditional term
@article{DMGAA_2000_20_1_a9,
     author = {Pinus, A.},
     title = {The positive and generalized discriminators don't exist},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a9/}
}
TY  - JOUR
AU  - Pinus, A.
TI  - The positive and generalized discriminators don't exist
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2000
SP  - 121
EP  - 128
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a9/
LA  - en
ID  - DMGAA_2000_20_1_a9
ER  - 
%0 Journal Article
%A Pinus, A.
%T The positive and generalized discriminators don't exist
%J Discussiones Mathematicae. General Algebra and Applications
%D 2000
%P 121-128
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a9/
%G en
%F DMGAA_2000_20_1_a9
Pinus, A. The positive and generalized discriminators don't exist. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 121-128. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a9/

[1] A.G. Pinus, On conditional terms and identities on universal algebras, Siberian Advances in Math. 8 (1998), 96-109.

[2] A.G. Pinus, The calculas of conditional identities and conditionally rational equivalence (in Russian), Algebra i Logika (English transl.: Algebra and Logic) 37 (1998), 432-459.

[3] A.G. Pinus, N-elementary embeddings and n-conditionally terms, Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 1, 36-40.

[4] A.G. Pinus, Conditional terms and its applications, Algebra Proceedings of the Kurosh Conference, Walter de Gruyter, Berlin-New York 2000, 291-300.

[5] A.G. Pinus, The inner homomorphisms and positive conditinal terms, (in Russian), Algebra i Logika, to appear.