On unique factorization semilattices
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 97-120.

Voir la notice de l'article provenant de la source Library of Science

The class of unique factorization semilattices (UFSs) contains important examples of semilattices such as free semilattices and the semilattices of idempotents of free inverse monoids. Their structural properties allow an efficient study, among other things, of their principal ideals. A general construction of UFSs from arbitrary posets is presented and some categorical properties are derived. The problem of embedding arbitrary semilattices into UFSs is considered and complete characterizations are obtained for particular classes of semilattices. The study of the Munn semigroup for regular UFSs is developed and a complete characterization is accomplished with respect to being E-unitary.
Keywords: semilattice, factorization, principal ideal, semilattice embedding, Munn semigroup
@article{DMGAA_2000_20_1_a8,
     author = {Silva, Pedro},
     title = {On unique factorization semilattices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {97--120},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a8/}
}
TY  - JOUR
AU  - Silva, Pedro
TI  - On unique factorization semilattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2000
SP  - 97
EP  - 120
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a8/
LA  - en
ID  - DMGAA_2000_20_1_a8
ER  - 
%0 Journal Article
%A Silva, Pedro
%T On unique factorization semilattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2000
%P 97-120
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a8/
%G en
%F DMGAA_2000_20_1_a8
Silva, Pedro. On unique factorization semilattices. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 97-120. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a8/

[1] J.M. Howie, An introduction to semigroup theory, Academic Press,London 1976.

[2] P.V. Silva, On the semilattice of idempotents of a free inverse monoid, Proc. Edinburgh Math. Soc. 36 (1993), 349-360.