Ring-like operations is pseudocomplemented semilattices
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 87-95.

Voir la notice de l'article provenant de la source Library of Science

Ring-like operations are introduced in pseudocomplemented semilattices in such a way that in the case of Boolean pseudocomplemented semilattices one obtains the corresponding Boolean ring operations. Properties of these ring-like operations are derived and a characterization of Boolean pseudocomplemented semilattices in terms of these operations is given. Finally, ideals in the ring-like structures are defined and characterized.
Keywords: pseudocomplemented semilattice, Boolean algebra, Boolean ring, distributivity, linear equation, ideal, congruence kernel
@article{DMGAA_2000_20_1_a7,
     author = {Chajda, Ivan and L\"anger, Helmut},
     title = {Ring-like operations is pseudocomplemented semilattices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {87--95},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a7/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Länger, Helmut
TI  - Ring-like operations is pseudocomplemented semilattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2000
SP  - 87
EP  - 95
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a7/
LA  - en
ID  - DMGAA_2000_20_1_a7
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Länger, Helmut
%T Ring-like operations is pseudocomplemented semilattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2000
%P 87-95
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a7/
%G en
%F DMGAA_2000_20_1_a7
Chajda, Ivan; Länger, Helmut. Ring-like operations is pseudocomplemented semilattices. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 87-95. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a7/

[1] I. Chajda, Pseudosemirings induced by ortholattices, Czechoslovak Math. J. 46 (121) (1996), 405-411.

[2] G. Dorfer, A. Dvurecenskij and H. Länger, Symmetric difference in orthomodular lattices, Math. Slovaca 46 (1996), 435-444.

[3] D. Dorninger, H. Länger and M. Maczyński, The logic induced by a system of homomorphisms and its various algebraic characterizations, Demonstratio Math. 30 (1997), 215-232.

[4] O. Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505-514.

[5] H. Länger, Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices, Tatra Mt. Math. Publ. 15 (1998), 97-105.

[6] A.I. Mal'cev, On the general theory of algebraic systems (Russian), Mat. Sb. 35 (1954), 3-20.