Ring-like operations is pseudocomplemented semilattices
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 87-95
Cet article a éte moissonné depuis la source Library of Science
Ring-like operations are introduced in pseudocomplemented semilattices in such a way that in the case of Boolean pseudocomplemented semilattices one obtains the corresponding Boolean ring operations. Properties of these ring-like operations are derived and a characterization of Boolean pseudocomplemented semilattices in terms of these operations is given. Finally, ideals in the ring-like structures are defined and characterized.
Keywords:
pseudocomplemented semilattice, Boolean algebra, Boolean ring, distributivity, linear equation, ideal, congruence kernel
@article{DMGAA_2000_20_1_a7,
author = {Chajda, Ivan and L\"anger, Helmut},
title = {Ring-like operations is pseudocomplemented semilattices},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {87--95},
year = {2000},
volume = {20},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a7/}
}
TY - JOUR AU - Chajda, Ivan AU - Länger, Helmut TI - Ring-like operations is pseudocomplemented semilattices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2000 SP - 87 EP - 95 VL - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a7/ LA - en ID - DMGAA_2000_20_1_a7 ER -
Chajda, Ivan; Länger, Helmut. Ring-like operations is pseudocomplemented semilattices. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 87-95. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a7/
[1] I. Chajda, Pseudosemirings induced by ortholattices, Czechoslovak Math. J. 46 (121) (1996), 405-411.
[2] G. Dorfer, A. Dvurecenskij and H. Länger, Symmetric difference in orthomodular lattices, Math. Slovaca 46 (1996), 435-444.
[3] D. Dorninger, H. Länger and M. Maczyński, The logic induced by a system of homomorphisms and its various algebraic characterizations, Demonstratio Math. 30 (1997), 215-232.
[4] O. Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505-514.
[5] H. Länger, Generalizations of the correspondence between Boolean algebras and Boolean rings to orthomodular lattices, Tatra Mt. Math. Publ. 15 (1998), 97-105.
[6] A.I. Mal'cev, On the general theory of algebraic systems (Russian), Mat. Sb. 35 (1954), 3-20.