Spectra of abelian wekly associative lattice groups
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 51-61.

Voir la notice de l'article provenant de la source Library of Science

The notion of a weakly associative lattice group is a generalization of that of a lattice ordered group in which the identities of associativity of the lattice operations join and meet are replaced by the identities of weak associativity. In the paper, the spectral topologies on the sets of straightening ideals (and on some of their subsets) of abelian weakly associative lattice groups are introduced and studied.
Keywords: weakly associative lattice group, prime ideal, straightening ideal, spectral topology, spectrum
@article{DMGAA_2000_20_1_a4,
     author = {Rach\r{u}nek, Ji\v{r}{\'\i}},
     title = {Spectra of abelian wekly associative lattice groups},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {51--61},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a4/}
}
TY  - JOUR
AU  - Rachůnek, Jiří
TI  - Spectra of abelian wekly associative lattice groups
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2000
SP  - 51
EP  - 61
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a4/
LA  - en
ID  - DMGAA_2000_20_1_a4
ER  - 
%0 Journal Article
%A Rachůnek, Jiří
%T Spectra of abelian wekly associative lattice groups
%J Discussiones Mathematicae. General Algebra and Applications
%D 2000
%P 51-61
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a4/
%G en
%F DMGAA_2000_20_1_a4
Rachůnek, Jiří. Spectra of abelian wekly associative lattice groups. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 51-61. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a4/

[1] M. R. Darnel, Theory of Lattice-Ordered Groups, Marcel Dekker, Inc., New York-Basel-Hong Kong 1995.

[2] E. Fried, Tournaments and non-associative lattices, Ann. Univ. Sci. Budapest, Sect. Math. 13 (1970), 151-164.

[3] E. Fried, A generalization of ordered algebraic systems, Acta Sci. Math. (Szeged) 31 (1970), 233-244.

[4] A.M.W. Glass and W.Ch. Holland (Eds.), Lattice-Ordered Groups (Advances and Techniques), Kluwer Acad. Publ., Dordrecht-Boston-London 1989.

[5] V.M. Kopytov and N.Ya. Medvedev, The Theory of Lattice Ordered Groups, Kluwer Acad. Publ., Dordrecht 1994.

[6] J. Rachůnek, Structure spaces of lattice ordered groups, Czechoslovak Math. J. 39 (114) (1989), 686-691.

[7] J. Rachůnek, Solid subgroups of weakly associative lattice groups, Acta Univ. Palack. Olom., Fac. Rer. Nat., no. 105, Math. 31 (1992), 13-24.

[8] J. Rachůnek, On some varieties of weakly associative lattice groups, Czechoslovak Math. J. 46 (121) (1996), 231-240.

[9] H. Skala, Trellis theory, Algebra Universalis 1 (1971), 218-233.

[10] H. Skala, Trellis Theory, Memoirs Amer. Math. Soc., no. 121, Providence 1972.