Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2000_20_1_a4, author = {Rach\r{u}nek, Ji\v{r}{\'\i}}, title = {Spectra of abelian wekly associative lattice groups}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {51--61}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a4/} }
Rachůnek, Jiří. Spectra of abelian wekly associative lattice groups. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 51-61. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a4/
[1] M. R. Darnel, Theory of Lattice-Ordered Groups, Marcel Dekker, Inc., New York-Basel-Hong Kong 1995.
[2] E. Fried, Tournaments and non-associative lattices, Ann. Univ. Sci. Budapest, Sect. Math. 13 (1970), 151-164.
[3] E. Fried, A generalization of ordered algebraic systems, Acta Sci. Math. (Szeged) 31 (1970), 233-244.
[4] A.M.W. Glass and W.Ch. Holland (Eds.), Lattice-Ordered Groups (Advances and Techniques), Kluwer Acad. Publ., Dordrecht-Boston-London 1989.
[5] V.M. Kopytov and N.Ya. Medvedev, The Theory of Lattice Ordered Groups, Kluwer Acad. Publ., Dordrecht 1994.
[6] J. Rachůnek, Structure spaces of lattice ordered groups, Czechoslovak Math. J. 39 (114) (1989), 686-691.
[7] J. Rachůnek, Solid subgroups of weakly associative lattice groups, Acta Univ. Palack. Olom., Fac. Rer. Nat., no. 105, Math. 31 (1992), 13-24.
[8] J. Rachůnek, On some varieties of weakly associative lattice groups, Czechoslovak Math. J. 46 (121) (1996), 231-240.
[9] H. Skala, Trellis theory, Algebra Universalis 1 (1971), 218-233.
[10] H. Skala, Trellis Theory, Memoirs Amer. Math. Soc., no. 121, Providence 1972.