On duality of submodule lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 43-49
Cet article a éte moissonné depuis la source Library of Science
An elementary proof is given for Hutchinson's duality theorem, which states that if a lattice identity λ holds in all submodule lattices of modules over a ring R with unit element then so does the dual of λ.
Keywords:
submodule lattice, lattice identity, duality
@article{DMGAA_2000_20_1_a3,
author = {Cz\'edli, G\'abor and Tak\'ach, G\'eza},
title = {On duality of submodule lattices},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {43--49},
year = {2000},
volume = {20},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a3/}
}
Czédli, Gábor; Takách, Géza. On duality of submodule lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 43-49. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a3/
[1] G. Frobenius, Theorie der linearen Formen mit ganzen Coefficienten, J. Reine Angew. Math. 86 (1879), 146-208.
[2] G. Hutchinson, On classes of lattices representable by modules, Proceedings of the University of Houston Lattice Theory Conference, Univ. Houston 1973, 69-94.
[3] G. Hutchinson and G. Czédli, A test for identities satisfied in submodule lattices, Algebra Universalis 8 (1978), 269-309.
[4] A.F. Pixley, Local Mal'cev conditions, Canadian Math. Bull. 15 (1972), 559-568.
[5] R. Wille, Kongruenzklassengeometrien, Lecture Notes in Math, no. 113, Springer-Verlag, Berlin-Heidelberg-New York 1970.