Modyfications of Csákány's Theorem
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 37-41.

Voir la notice de l'article provenant de la source Library of Science

Varieties whose algebras have no idempotent element were characterized by B. Csákány by the property that no proper subalgebra of an algebra of such a variety is a congruence class. We simplify this result for permutable varieties and we give a local version of the theorem for varieties with nullary operations.
Keywords: congruence class, idempotent element, permutable variety, Mal'cev condition
@article{DMGAA_2000_20_1_a2,
     author = {Chajda, Ivan},
     title = {Modyfications of {Cs\'ak\'any's} {Theorem}},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {37--41},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a2/}
}
TY  - JOUR
AU  - Chajda, Ivan
TI  - Modyfications of Csákány's Theorem
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2000
SP  - 37
EP  - 41
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a2/
LA  - en
ID  - DMGAA_2000_20_1_a2
ER  - 
%0 Journal Article
%A Chajda, Ivan
%T Modyfications of Csákány's Theorem
%J Discussiones Mathematicae. General Algebra and Applications
%D 2000
%P 37-41
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a2/
%G en
%F DMGAA_2000_20_1_a2
Chajda, Ivan. Modyfications of Csákány's Theorem. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 37-41. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a2/

[1] I. Chajda and J. Duda, Compact universal relation in varieties with constants, Czechoslovak Math. J. 47 (1997), 173-178.

[2] B. Csákány, Varieties whose algebras have no idempotent elements, Colloq. Math. 35 (1976), 201-203.

[3] J. Kollár, Congruences and one-element subalgebras, Algebra Universalis 9 (1979), 266-267.