Modyfications of Csákány's Theorem
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 37-41
Cet article a éte moissonné depuis la source Library of Science
Varieties whose algebras have no idempotent element were characterized by B. Csákány by the property that no proper subalgebra of an algebra of such a variety is a congruence class. We simplify this result for permutable varieties and we give a local version of the theorem for varieties with nullary operations.
Keywords:
congruence class, idempotent element, permutable variety, Mal'cev condition
@article{DMGAA_2000_20_1_a2,
author = {Chajda, Ivan},
title = {Modyfications of {Cs\'ak\'any's} {Theorem}},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {37--41},
year = {2000},
volume = {20},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a2/}
}
Chajda, Ivan. Modyfications of Csákány's Theorem. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 37-41. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a2/
[1] I. Chajda and J. Duda, Compact universal relation in varieties with constants, Czechoslovak Math. J. 47 (1997), 173-178.
[2] B. Csákány, Varieties whose algebras have no idempotent elements, Colloq. Math. 35 (1976), 201-203.
[3] J. Kollár, Congruences and one-element subalgebras, Algebra Universalis 9 (1979), 266-267.