Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2000_20_1_a1, author = {Denecke, Klaus and Hyndman, Jennifer and Wismath, Shelly}, title = {The {Galois} correspondence between subvariety lattices and monoids of hpersubstitutions}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {21--36}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a1/} }
TY - JOUR AU - Denecke, Klaus AU - Hyndman, Jennifer AU - Wismath, Shelly TI - The Galois correspondence between subvariety lattices and monoids of hpersubstitutions JO - Discussiones Mathematicae. General Algebra and Applications PY - 2000 SP - 21 EP - 36 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a1/ LA - en ID - DMGAA_2000_20_1_a1 ER -
%0 Journal Article %A Denecke, Klaus %A Hyndman, Jennifer %A Wismath, Shelly %T The Galois correspondence between subvariety lattices and monoids of hpersubstitutions %J Discussiones Mathematicae. General Algebra and Applications %D 2000 %P 21-36 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a1/ %G en %F DMGAA_2000_20_1_a1
Denecke, Klaus; Hyndman, Jennifer; Wismath, Shelly. The Galois correspondence between subvariety lattices and monoids of hpersubstitutions. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 21-36. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a1/
[1] J. Aczel, Proof of a theorem of distributive type hyperidentities, Algebra Universalis 1 (1971), 1-6.
[2] V.D. Belousov, Systems of quasigroups with generalized identities, (Russian) Uspekhi Mat. Nauk. 20 (1965) 75-146 (English translation: Russian Math. Surveys 20 (1965) 75-143).
[3] P.A. Birjukov, Varieties of idempotent semigroups (Russian), Algebra i Logika 9 (1970), 255-273.
[4] K. Denecke, Pre-solid varieties, Demonstratio Math. 27 (1994), 741-750.
[5] K. Denecke and J. Koppitz, Hyperassociative varieties of semigroups, Semigroup Forum 49 (1994), 41-48.
[6] K. Denecke and J. Koppitz, Presolid varieties of semigroups, Arch. Math. (Brno) 31 (1995), 171-181.
[7] K. Denecke and J. Koppitz, M-solid varieties of semigroups, Discuss. Math.- Algebra and Stochastic Methods 15 (1995), 23-41.
[8] K. Denecke and J. Koppitz, Finite monoids of hypersubstitutions of type τ = (2), Semigroup Forum 56 (1998), 265-275.
[9] K. Denecke, D. Lau, R. Pöschel and D. Schweigert, Hyperidentities, hyperequational classes and clone congruences, Contributions to General Algebra 7 (1991), 97-118.
[10] K. Denecke and M. Reichel, Monoids of hypersubstitutions and M-solid varieties, Contributions to General Algebra 9 (1995), 117-126.
[11] K. Denecke and S.L. Wismath, Solid varieties of semigroups, Semigroup Forum 48 (1994), 219-234.
[12] K. Denecke and S.L. Wismath, Hyperidentities and Clones, Gordon Breach Sci. Publ, London 2000.
[13] C. Fennemore, All varieties of bands. I and II, Math. Nachr. 48 (1971), 237-252 and 253-262.
[14] J.A. Gerhard, The lattice of equational classes of idempotent semigroups, J. Algebra 15 (1970), 195-224.
[15] J.A. Gerhard and M. Petrich, Varieties of bands revisited, Proc. London Math. Soc. (3) 58 (1989), 323-350.
[16] E. Graczyńska and D. Schweigert, Hypervarieties of a given type, Algebra Universalis 27 (1990), 305-318.
[17] J. P onka, Proper and inner hypersubstitutions of varieties, General Algebra and Ordered Sets, Palacký Univ., Olomouc 1994, 106-115.
[18] L. Polák, On hyperassociativity, Algebra Universalis 36 (1996), 363-378.
[19] D. Schweigert, Hyperidentities, Algebras and Orders, Kluwer Acad. Publ., Dordrecht 1993, 405-505.
[20] W. Taylor, Hyperidentities and hypervarieties, Aequationes Math. 23 (1981), 111-127.
[21] S.L. Wismath, Hyperidentities for some varieties of semigroups, Algebra Universalis 27 (1990), 111-127.
[22] S.L. Wismath, Hyperidentities for some varieties of commutative semigroups, Algebra Universalis 28 (1991), 245-273.