Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2016_36_2_a2, author = {Abbas, Sa{\"\i}d and Benchohra, Mouffak and Abdalla Darwish, Mohamed}, title = {Upper and lower solutions method for partial discontinuous fractional differential inclusions with not instantaneous impulses}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {155--179}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2016_36_2_a2/} }
TY - JOUR AU - Abbas, Saïd AU - Benchohra, Mouffak AU - Abdalla Darwish, Mohamed TI - Upper and lower solutions method for partial discontinuous fractional differential inclusions with not instantaneous impulses JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2016 SP - 155 EP - 179 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2016_36_2_a2/ LA - en ID - DMDICO_2016_36_2_a2 ER -
%0 Journal Article %A Abbas, Saïd %A Benchohra, Mouffak %A Abdalla Darwish, Mohamed %T Upper and lower solutions method for partial discontinuous fractional differential inclusions with not instantaneous impulses %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2016 %P 155-179 %V 36 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2016_36_2_a2/ %G en %F DMDICO_2016_36_2_a2
Abbas, Saïd; Benchohra, Mouffak; Abdalla Darwish, Mohamed. Upper and lower solutions method for partial discontinuous fractional differential inclusions with not instantaneous impulses. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 2, pp. 155-179. http://geodesic.mathdoc.fr/item/DMDICO_2016_36_2_a2/
[1] S. Abbas, R.P. Agarwal and M. Benchohra, Impulsive discontinuous partial hyperbolic differential equations of fractional order on Banach Algebras, Electron. J. Differential Equations 2010 (2010), 1-17.
[2] S. Abbas and M. Benchohra, Upper and lower solutions method for Darboux problem for fractional order implicit impulsive partial hyperbolic differential equations, Acta Univ. Palacki. Olomuc. 51 (2) (2012), 5-18.
[3] S. Abbas and M. Benchohra, Upper and lower solutions method for the Darboux problem for fractional order partial differential inclusions, Int. J. Modern Math. 5 (3) (2010), 327-338.
[4] S. Abbas and M. Benchohra, The method of upper and lower solutions for partial hyperbolic fractional order differential inclusions with impulses, Discuss. Math. Differ. Incl. Control Optim. 30 (1) (2010), 141-161. doi: 10.7151/dmdico.1116
[5] S. Abbas and M. Benchohra, Impulsive partial hyperbolic functional differential equations of fractional order with state-dependent delay, Frac. Calc. Appl. Anal. 13 (3) (2010), 225-244.
[6] S. Abbas and M. Benchohra, Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses, Appl. Math. Comput. 257 (2015), 190-198. doi: 10.1016/j.amc.2014.06.073
[7] S. Abbas, M. Benchohra and A. Hammoudi, Upper lower solutions method and extremal solutions for impulsive discontinuous partial fractional differential inclusions, PanAmerican Math. J. 24 (1) (2014), 31-52.
[8] S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations (Springer, New York, 2012). doi: 10.1007/978-1-4614-4036-9
[9] S. Abbas, M. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations (Nova Science Publishers, New York, 2015).
[10] S. Abbas, M. Benchohra, G.M. N'Guérékata and B.A. Slimani, Darboux problem for fractional order discontinuous hyperbolic partial differential equations in Banach algebras, Complex Var. Elliptic Equ. 57 (2012), 337-350. doi: 10.1080/17476933.2011.555542
[11] S. Abbas, M. Benchohra and A.N. Vityuk, On fractional order derivatives and Darboux problem for implicit differential equations, Frac. Calc. Appl. Anal. 15 (2) (2012), 168-182. doi: 10.2478/s13540-012-0012-5
[12] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions (Hindawi Publishing Corporation, Vol. 2, New York, 2006). doi: 10.1155/9789775945501
[13] M. Benchohra and S.K. Ntouyas, The method of lower and upper solutions to the Darboux problem for partial differential inclusions, Miskolc Math. Notes 4 (2) (2003), 81-88.
[14] M.A. Darwish, J. Henderson and D. O'Regan, Existence and asymptotic stability of solutions of a perturbed fractional functional-integral equation with linear modification of the argument, Bull. Korean Math. Soc. 48 (3) (2011), 539-553. doi: 10.4134/BKMS.2011.48.3.539
[15] M.A. Darwish and J. Henderson, Nondecreasing solutions of a quadratic integral equation of Urysohn-Stieltjes type, Rocky Mountain J. Math. 42 (2) (2012), 545-566. doi: 10.1216/RMJ-2012-42-2-545
[16] M.A. Darwish and J. Banaś, Existence and characterization of solutions of nonlinear Volterra-Stieltjes integral equations in two vriables, Abstr. Appl. Anal. 2014, Art. ID 618434, 11 pp.
[17] B.C. Dhage, Existence results for neutral functional differential inclusions in Banach algebras, Nonlinear Anal. 64 (2006), 1290-1306. doi: 10.1016/j.na.2005.06.036
[18] B.C. Dhage, A fixed point theorem for multi-valued mappings on ordered Banach spaces with applications} II, Panamer. Math. J. 15 (2005), 15-34.
[19] K. Diethelm and N.J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248. doi: 10.1006/jmaa.2000.7194
[20] S. Heikkila and V. Lakshmikantham, Monotone Iterative Technique for Nonlinear Discontinuous Differential Equations (Marcel Dekker Inc., New York, 1994).
[21] E. Hernández and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc. 141 (2013), 1641-1649. doi: 10.1090/S0002-9939-2012-11613-2
[22] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory (Kluwer, Dordrecht, Boston, London, 1997), .
[23] A.A. Kilbas and S.A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Diff. Equ. 41 (2005), 84-89. doi: 10.1007/s10625-005-0137-y
[24] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations (North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006).
[25] G.S. Ladde, V. Lakshmikanthan and A.S. Vatsala, Monotone Iterative Techniques for Nonliner Differential Equations (Pitman Advanced Publishing Program, London, 1985).
[26] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.
[27] M. Pierri, D. O'Regan and V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous, Appl. Math. Comput. 219 (2013), 6743-6749. doi: 10.1016/j.amc.2012.12.084
[28] A.N. Vityuk and A.V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscil. 7 (3) (2004), 318-325. doi: 10.1007/s11072-005-0015-9
[29] A.N. Vityuk and A.V. Mykhailenko, The Darboux problem for an implicit fractional-order differential equation, J. Math. Sci. 175 (4) (2011), 391-401. doi: 10.1007/s10958-011-0353-3