Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2016_36_1_a6, author = {Cembranos, Pilar and Mendoza, Jose}, title = {On the mutually non isomorphic $l_{p}(l_{q})$}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {117--127}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a6/} }
TY - JOUR AU - Cembranos, Pilar AU - Mendoza, Jose TI - On the mutually non isomorphic $l_{p}(l_{q})$ JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2016 SP - 117 EP - 127 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a6/ LA - en ID - DMDICO_2016_36_1_a6 ER -
%0 Journal Article %A Cembranos, Pilar %A Mendoza, Jose %T On the mutually non isomorphic $l_{p}(l_{q})$ %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2016 %P 117-127 %V 36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a6/ %G en %F DMDICO_2016_36_1_a6
Cembranos, Pilar; Mendoza, Jose. On the mutually non isomorphic $l_{p}(l_{q})$. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 1, pp. 117-127. http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a6/
[1] F. Albiac and J.L. Ansorena, On the mutually non isomorphic $l_{p}(l_{q})$ spaces, II, Math. Nachr. 288 (2015), 5-9. doi: 10.1002/mana.201300161
[2] F. Albiac and N.J. Kalton, Topics in Banach space theory (Graduate Texts in Mathematics, 233, Springer, New York, 2006).
[3] J. Bourgain, P.G. Casazza, J. Lindenstrauss and L. Tzafriri, Banach spaces with a unique unconditional basis, up to permutation, Mem. Amer. Math. Soc. 54, no. 322 (1985).
[4] P. Cembranos and J. Mendoza, Banach spaces of vector-valued functions (Lecture Notes in Mathematics 1676, Springer-Verlag, Berlin, 1997).
[5] ,P. Cembranos and J. Mendoza, $l_{∞}(l₁)$ and $l₁(l_{∞})$ are not isomorphic, J. Math. Anal. Appl. 341 (2008), 295-297. doi: 10.1016/j.jmaa.2007.10.027
[6] P. Cembranos and J. Mendoza, The Banach spaces $l_{∞}(c₀)$ and $c₀(l_{∞})$ are not isomorphic, J. Math. Anal. Appl. 367 (2010), 361-363. doi: 10.1016/j.jmaa.2010.01.057
[7] P. Cembranos and J. Mendoza, On the mutually non isomorphic $l_{p}(l_{q})$ spaces, Math. Nachr. 284 (2011), 2013-2023. doi: 10.1002/mana.201010056
[8] J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators,Cambridge Studies in Advanced Mathematics, 43 (Cambridge University Press, Cambridge, 1995).
[9] W.B. Johnson, A complementary universal conjugate Banach space and its relation to the approximation problem, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972). Israel J. Math. 13 (1972), 301-310. doi: 10.1007/BF02762804
[10] T.E. Khmyleva, On the isomorphism of spaces of bounded continuous functions (Russian. English summary), Investigations on linear operators and the theory of functions, XI. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),113,1981,243-246. Translated in Journal of Soviet Mathematics, 22 (1983), 1860-1862. doi: 10.1007/BF01882590
[11] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I (Ergebnisse der Mathematik und ihrer Grenzgebiete vol. 92, Springer-Verlag, 1977).
[12] J. Motos, M.J. Planells and C.F. Talavera, On some iterated weighted spaces, J. Math. Anal. Appl. 338 (2008), 162-174. doi: 10.1016/j.jmaa.2007.05.009
[13] J. Motos and M.J. Planells, On sequence space representations of Hörmander-Beurling spaces, J. Math. Anal. Appl. 348 (2008), 395-403. doi: 10.1016/j.jmaa.2008.07.031
[14] A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.
[15] H. Triebel, Interpolation theory, function spaces, differential operators (VEB Deutscher Verlag der Wissenschaften, Berlin and North-Holland Publishing Co., Amsterdam-New York 1978 (First editions). Johann Ambrosius Barth, Heidelberg 1995 (Second edition)).