Topological properties of some spaces of continuous operators
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 1, pp. 79-86.

Voir la notice de l'article provenant de la source Library of Science

Let X be a completely regular Hausdorff space, E and F be Banach spaces. Let C_b(X,E) be the space of all E-valued bounded continuous functions on X, equipped with the strict topology β. We study topological properties of the space L_β(C_b(X,E),F) of all (β,||·||_F)-continuous linear operators from C_b(X,E) to F, equipped with the topology τ_s of simple convergence. If X is a locally compact paracompact space (resp. a P-space), we characterize τ_s-compact subsets of L_β(C_b(X,E),F) in terms of properties of the corresponding sets of the representing operator-valued Borel measures. It is shown that the space (L_β(C_b(X,E),F),τ_s) is sequentially complete if X is a locally compact paracompact space.
Keywords: spaces of vector-valued continuous functions, strict topologies, operator measures, topology of simple convergence, continuous operators
@article{DMDICO_2016_36_1_a4,
     author = {Nowak, Marian},
     title = {Topological properties of some spaces of continuous operators},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {79--86},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a4/}
}
TY  - JOUR
AU  - Nowak, Marian
TI  - Topological properties of some spaces of continuous operators
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2016
SP  - 79
EP  - 86
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a4/
LA  - en
ID  - DMDICO_2016_36_1_a4
ER  - 
%0 Journal Article
%A Nowak, Marian
%T Topological properties of some spaces of continuous operators
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2016
%P 79-86
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a4/
%G en
%F DMDICO_2016_36_1_a4
Nowak, Marian. Topological properties of some spaces of continuous operators. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 1, pp. 79-86. http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a4/

[1] N. Bourbaki, Elements of Mathematics, Topological Vector Spaces, Chap. 1-5 (Springer, Berlin, 1987). doi: 10.1007/978-3-642-61715-7

[2] R.C. Buck, Bounded contiuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104. doi: 10.1307/mmj/1028998054

[3] S. Choo, Strict topology on spaces of continuous vector-valued functions, Can. J. Math. 31 (4) (1979), 890-896. doi: 10.4153/CJM-1979-084-9

[4] J.B. Cooper, The strict topology and spaces with mixed topologies, Proc. Amer. Math. Soc. 30 (3) (1971), 583-592. doi: 10.1090/S0002-9939-1971-0284789-2

[5] N. Dinculeanu, Vector Measures (Pergamon Press, New York, 1967). doi: 10.1016/b978-1-4831-9762-3.50004-4

[6] D. Fontenot, Strict topologies for vector-valued functions, Canad. J. Math. 26 (4) (1974), 841-853. doi: 10.4153/CJM-1974-079-1

[7] R.K. Goodrich, A Riesz representation theorem, Proc. Amer. Math. Soc. 24 (1970), 629-636. doi: 10.1090/S0002-9939-1970-0415386-2

[8] L. Gillman and M. Henriksen, Concerning rings of continuous functions, Trans. Amer. Math. Soc. 77 (1954), 340-362. doi: 10.1090/S0002-9947-1954-0063646-5

[9] L.A. Khan, The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc. 22 (1) (1979), 35-41. doi: 10.1017/S0013091500027784

[10] L.A. Khan and K. Rowlands, On the representation of strictly continuous linear functionals, Proc. Edinburgh Math. Soc. 24 (1981), 123-130. doi: 10.1017/S0013091500006428

[11] S.S. Khurana, Topologies on spaces of vector-valued continuous functions, Trans. Amer. Math. Soc. 241 (1978), 195-211. doi: 10.1090/S0002-9947-1978-0492297-X

[12] S.S. Khurana and S.A. Choo, Strict topology and P-spaces, Proc. Amer. Math. Soc. 61 (1976), 280-284. doi: 10.2307/2041326

[13] S.S. Khurana and S.I. Othman, Completeness and sequential completeness in certain spaces of measures, Math. Slovaca 45 (2) (1995), 163-170.

[14] M. Nowak, A Riesz representation theory for completely regular Hausdorff spaces and its applications, Open Math., (in press).

[15] W. Ruess, [Weakly] compact operators and DF-spaces, Pacific J. Math. 98 (1982), 419-441. doi: 10.2140/pjm.1982.98.419

[16] H. Schaeffer and X.-D. Zhang, On the Vitali-Hahn-Saks theorem, Operator Theory, Adv. Appl. 75 (Birkhäuser, Basel, 1995), 289-297.

[17] J. Schmets and J. Zafarani, Strict topologies and (gDF)-spaces, Arch. Math. 49 (1987), 227-231. doi: 10.1007/BF01271662

[18] R. Wheeler, The strict topology for P-spaces, Proc. Amer. Math. Soc. 41 (2) (1973), 466-472. doi: 10.2307/2039115

[19] A. Wiweger, Linear spaces with mixed topology, Studia Math. 20 (1961), 47-68.