Upper and lower solutions method for partial Hadamard fractional integral equations and inclusions
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 2, pp. 105-122.

Voir la notice de l'article provenant de la source Library of Science

In this paper we use the upper and lower solutions method combined with Schauder's fixed point theorem and a fixed point theorem for condensing multivalued maps due to Martelli to investigate the existence of solutions for some classes of partial Hadamard fractional integral equations and inclusions.
Keywords: functional integral equation, integral inclusion, Hadamard partial fractional integral, condensing multivalued map, existence, upper solution, lower solution, fixed point
@article{DMDICO_2015_35_2_a0,
     author = {Abbas, Sa{\"\i}d and Alaidarous, Eman and Albarakati, Wafaa and Benchohra, Mouffak},
     title = {Upper and lower solutions method for partial {Hadamard} fractional integral equations and inclusions},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {105--122},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2015},
     zbl = {06516989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a0/}
}
TY  - JOUR
AU  - Abbas, Saïd
AU  - Alaidarous, Eman
AU  - Albarakati, Wafaa
AU  - Benchohra, Mouffak
TI  - Upper and lower solutions method for partial Hadamard fractional integral equations and inclusions
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2015
SP  - 105
EP  - 122
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a0/
LA  - en
ID  - DMDICO_2015_35_2_a0
ER  - 
%0 Journal Article
%A Abbas, Saïd
%A Alaidarous, Eman
%A Albarakati, Wafaa
%A Benchohra, Mouffak
%T Upper and lower solutions method for partial Hadamard fractional integral equations and inclusions
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2015
%P 105-122
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a0/
%G en
%F DMDICO_2015_35_2_a0
Abbas, Saïd; Alaidarous, Eman; Albarakati, Wafaa; Benchohra, Mouffak. Upper and lower solutions method for partial Hadamard fractional integral equations and inclusions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 2, pp. 105-122. http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a0/

[1] S. Abbas and M. Benchohra, Fractional order integral equations of two independent variables, Appl. Math. Comput. 227 (2014), 755-761. doi: 10.1016/j.amc.2013.10.086

[2] S. Abbas and M. Benchohra, Upper and lower solutions method for the Darboux problem for fractional order partial differential inclusions, Int. J. Modern Math. 5 (3) (2010), 327-338.

[3] S. Abbas and M. Benchohra, Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order, Nonlinear Anal. Hybrid Syst. 4 (2010), 406-413. doi: 10.1016/j.nahs.2009.10.004

[4] S. Abbas and M. Benchohra, Upper and lower solutions method for Darboux problem for fractional order implicit impulsive partial hyperbolic differential equations, Acta Univ. Palacki. Olomuc. 51 (2) (2012), 5-18.

[5] S. Abbas and M. Benchohra, The method of upper and lower solutions for partial hyperbolic fractional order differential inclusions with impulses, Discuss. Math. Differ. Incl. Control Optim. 30 (1) (2010), 141-161. doi: 10.7151/dmdico.1116

[6] S. Abbas, M. Benchohra and A. Hammoudi, Upper, lower solutions method and extremal solutions for impulsive discontinuous partial fractional differential inclusions, Panamerican Math. J. 24 (1) (2014), 31-52.

[7] S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations (Springer, New York, 2012). doi: 10.1007/978-1-4614-4036-9

[8] S. Abbas, M. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations (Nova Science Publishers, New York, 2015).

[9] S. Abbas, M. Benchohra and J.J. Trujillo, Upper and lower solutions method for partial fractional differential inclusions with not instantaneous impulses, Prog. Frac. Diff. Appl. 1 (1) (2015), 11-22.

[10] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces (Marcel-Dekker, New York, 1980).

[11] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for functional differential equations of fractional order, J. Math. Anal. Appl. 338 (2008), 1340-1350. doi: 10.1016/j.jmaa.2007.06.021

[12] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions (Hindawi Publishing Corporation, Vol. 2, New York, 2006). doi: 10.1155/9789775945501

[13] P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Fractional calculus in the mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl. 269 (2002), 1-27. doi: 10.1016/S0022-247X(02)00001-X

[14] P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl. 270 (2002), 1-15. doi: 10.1016/S0022-247X(02)00066-5

[15] K. Deimling, Multivalued Differential Equations (Walter de Gruyter, Berlin-New York, 1992). doi: 10.1515/9783110874228

[16] S. Djebali, L. Górniewicz and A. Ouahab, Solution Sets for Differential Equations and Inclusions, de Gruyter Series in Nonlinear Analysis and Applications (Walter de Gruyter Co., Berlin, 2013). doi: 10.1515/9783110293562

[17] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications, 495 (Kluwer Academic Publishers, Dordrecht, 1999). doi: 10.1007/978-94-015-9195-9

[18] A. Granas and J. Dugundji, Fixed Point Theory (Springer-Verlag, New York, 2003). doi: 10.1007/978-0-387-21593-8

[19] J. Hadamard, Essai sur l'étude des fonctions données par leur développment de Taylor, J. Pure Appl. Math. 4 (8) (1892), 101-186.

[20] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory (Kluwer, Dordrecht, Boston, London, 1997). doi: 10.1007/978-1-4615-6359-4

[21] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier Science B.V., Amsterdam, 2006).

[22] M. Kisielewicz, Differential Inclusions and Optimal Control (Kluwer Academic Publishers, Dordrecht, Netherlands, 1991).

[23] G.S. Ladde, V. Lakshmikanthan and A.S. Vatsala, Monotone Iterative Techniques for Nonliner Differential Equations (Pitman Advanced Publishing Program, London, 1985).

[24] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.

[25] M. Martelli, A Rothe's type theorem for noncompact acyclic-valued map, Boll. Un. Math. Ital. 11 (1975), 70-76.

[26] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations (John Wiley, New York, 1993).

[27] B.G. Pachpatte, Monotone methods for systems of nonlinear hyperbolic problems in two independent variables, Nonlinear Anal. 30 (1997), 235-272.

[28] S. Pooseh, R. Almeida and D. Torres, Expansion formulas in terms of integer-order derivatives for the hadamard fractional integral and derivative, Numer. Funct. Anal. Optim. 33 (3) (2012), 301-319. doi: 10.1080/01630563.2011.647197

[29] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications (Gordon and Breach, Yverdon, 1993).

[30] A.N. Vityuk, On solutions of hyperbolic differential inclusions with a nonconvex right-hand side, (Russian) Ukran. Mat. Zh. 47 (4) (1995), 531-534; translation in Ukrainian Math. J. 47 (4) (1995), 617-621 (1996).

[31] A.N. Vityuk and A.V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscil. 7 (2004), 318-325. doi: 10.1007/s11072-005-0015-9