Some averaging results for ordinary differential inclusions
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 1, pp. 47-63.

Voir la notice de l'article provenant de la source Library of Science

We consider ordinary differential inclusions and we state and discuss some averaging results for these inclusions. Our results are proved under weaker conditions than the results in the literature.
Keywords: ordinary differential inclusions, averaging method
@article{DMDICO_2015_35_1_a2,
     author = {Bourada, Amel and Guen, Rahma and Lakrib, Mustapha and Yadi, Karim},
     title = {Some averaging results for ordinary differential inclusions},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {47--63},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a2/}
}
TY  - JOUR
AU  - Bourada, Amel
AU  - Guen, Rahma
AU  - Lakrib, Mustapha
AU  - Yadi, Karim
TI  - Some averaging results for ordinary differential inclusions
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2015
SP  - 47
EP  - 63
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a2/
LA  - en
ID  - DMDICO_2015_35_1_a2
ER  - 
%0 Journal Article
%A Bourada, Amel
%A Guen, Rahma
%A Lakrib, Mustapha
%A Yadi, Karim
%T Some averaging results for ordinary differential inclusions
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2015
%P 47-63
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a2/
%G en
%F DMDICO_2015_35_1_a2
Bourada, Amel; Guen, Rahma; Lakrib, Mustapha; Yadi, Karim. Some averaging results for ordinary differential inclusions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 1, pp. 47-63. http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a2/

[1] J.P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory (Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1984). doi: 10.1007/978-3-642-69512-4

[2] K. Deimling, Multivalued Differential Equations (Walter de Gruyter, Berlin, 1992). doi: 10.1515/9783110874228

[3] G. Grammel, Averaging of multivalued differential equations, Int. J. Math. Math. Sci. 25 (2003), 1615-1622. doi: 10.1155/S016117120300680X

[4] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer Academic Publishers (Dordrecht-Boston-London, 1997).

[5] T. Janiak and E. Łuczak-Kumorek, Method of averaging for the system of functional-differential inclusions, Discuss. Math. 16 (1996), 137-151.

[6] T. Janiak and E. Łuczak-Kumorek, Averaging of neutral inclusions when the average value of the right-hand side does not exist, Acta Math. Viet. 25 (2000), 1-11.

[7] S. Klymchuk, A. Plotnikov and N. Skripnik, Overview of V.A. Plotnikov's research on averaging of differential inclusions, Physica D: Nonlinear Phenomena 241 (2012), 1932-1947. doi: 10.1016/j.physd.2011.05.004

[8] N.A. Perestyuk, V.A. Plotnikov, A.M. Samoilenko and N.V. Skripnik, Differential equations with impulse effects: multivalued right-hand sides with discontinuities, (De Gruyter Studies in Mathematics: 40). Berlin/Boston: Walter De Gruyter GmbH, 2011.

[9] N.V. Plotnikova, The Krasnosel'skii-Krein theorem for differential inclusions, Differ. Eq. 41 (2005), 1049-1053. doi: 10.1007/s10625-005-0248-5

[10] G.V. Smirnov, Introduction to the Theory of Differential Inclusions, Graduate Studies in Math. 41, AMS, Providence, 2002.