Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2015_35_1_a1, author = {Ezzinbi, Khalil and Degla, Guy and Ndambomve, Patrice}, title = {Controllability for some partial functional integrodifferential equations with nonlocal conditions in {Banach} spaces}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {25--46}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a1/} }
TY - JOUR AU - Ezzinbi, Khalil AU - Degla, Guy AU - Ndambomve, Patrice TI - Controllability for some partial functional integrodifferential equations with nonlocal conditions in Banach spaces JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2015 SP - 25 EP - 46 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a1/ LA - en ID - DMDICO_2015_35_1_a1 ER -
%0 Journal Article %A Ezzinbi, Khalil %A Degla, Guy %A Ndambomve, Patrice %T Controllability for some partial functional integrodifferential equations with nonlocal conditions in Banach spaces %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2015 %P 25-46 %V 35 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a1/ %G en %F DMDICO_2015_35_1_a1
Ezzinbi, Khalil; Degla, Guy; Ndambomve, Patrice. Controllability for some partial functional integrodifferential equations with nonlocal conditions in Banach spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 1, pp. 25-46. http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a1/
[1] A.A. Agrachev, (ed.), Mathematical Control Theory. Summer School on Mathematical Control Theory, First Edition, The Abdus Salam ICTP Publications and Printing Section (2002).
[2] R. Atmania and S. Mazouzi, Controllability of semilinear integrodifferential equations with nonlocal conditions, Electr. J. Diff. Equ. 2005 (75) (2005), 1-9.
[3] K. Balachandran and J.Y. Park, Existence of solutions and controllability of nonlinear integrodifferential systems in Banach spaces, Mathematical Problems in Engineering 2 (2003), 65-79. doi: 10.1155/S1024123X03201022
[4] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, vol. 60 (Marcel Dekker, New York, 1980).
[5] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494-505. doi: 10.1016/0022-247X(91)90164-U
[6] B. Cahlon, D.M. Kulkarni and P. Shi, Stepwise stability for the heat equation with a nonlocal constraint, Siam J. Numes. Anal. 32 (2) (1995), 571-593. doi: 10.1137/0732025
[7] Y.K. Chang, J.J. Nieto and W.S. Li, Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces, J. Optim. Theory Appl. 142 (2009), 267-273. doi: 10.1007/s10957-009-9535-2
[8] M.C. Delfour and J.P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, SIAM series on Advances in Design and Control, Society for Industrial and Applied Mathematics (Philadelphia, Second Edition, 2011). doi: 10.1137/1.9780898719826
[9] W. Desch, R. Grimmer and W. Schappacher, Some considerations for linear integrodifferential equations, J. Math. Anal. and Appl. 104 (1984), 219-234. doi: 10.1016/0022-247X(84)90044-1
[10] W. Desch, R. Grimmer and W. Schappacher, Well-posedness and wave propagation for a class of integrodifferential equations in Banach space, J. Differ. Equ. 74 (2) (1988), 391-411. doi: 10.1016/0022-0396(88)90011-3
[11] K. Ezzinbi, H. Toure and I. Zabsonre, Existence and regularity of solutions for some partial functional integrodifferential equations in Banach spaces, Nonlin. Anal. TMA 70 (2009), 2761-2771. doi: 10.1016/j.na.2008.04.001
[12] R. Grimmer, Resolvent operators for integral equations in a Banach space, AMS 273 (1982), 333-349. doi: 10.1090/S0002-9947-1982-0664046-4
[13] J. Liang, J.H. Liu and Xiao Ti-Jun, Nonlocal problems for integrodifferential equations, DCDIS Series A: Math. Anal. 15 (2008), 815-824.
[14] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlin. Anal. TMA 4 (5) (1980), 985-999.
[15] P. Neittaanmäki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, Pure and Applied Mathematics, A series of Monographs and Textbooks, 179 (1994).
[16] M.D. Quinn and N. Carmichael, An approach to nonlinear control problem using fixed point methods, degree theory and pseudo-inverses, Numer. Funct. Anal. Optim. 7 (1984). doi: 197-219
[17] S. Selvi and M.M. Arjunan, Controllability results for impulsive differential systems with finite delay, J. Nonlin. Sci. Appl. 5 (2012), 206-219.
[18] M. Schulz, Control Theory in Physics and Other Fields of Science: Concepts, Tools and Applications, Springer Tracts in Modern Physics, 215 (2006).
[19] I.I. Vrabie, C₀-Semigroups and Applications, Mathematics Studies. 191 (2003).
[20] J. Wang, Z. Fan and Y. Zhou, Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces, J. Optim. Theory Appl. 154 (2012), 292-302. doi: 10.1007/s10957-012-9999-3
[21] J. Wang and W. Wei, Controllability of integrodifferential systems with nonlocal initial conditions in Banach spaces, J. Math. Sci. 177 (3) (2011), 459-465. doi: 10.1007/s10958-011-0471-y