Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2014_34_1_a5, author = {Ahmed, N.}, title = {Stochastic evolution equations on {Hilbert} spaces with partially observed relaxed controls and their necessary conditions of optimality}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {105--129}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2014}, zbl = {1332.49030}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a5/} }
TY - JOUR AU - Ahmed, N. TI - Stochastic evolution equations on Hilbert spaces with partially observed relaxed controls and their necessary conditions of optimality JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2014 SP - 105 EP - 129 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a5/ LA - en ID - DMDICO_2014_34_1_a5 ER -
%0 Journal Article %A Ahmed, N. %T Stochastic evolution equations on Hilbert spaces with partially observed relaxed controls and their necessary conditions of optimality %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2014 %P 105-129 %V 34 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a5/ %G en %F DMDICO_2014_34_1_a5
Ahmed, N. Stochastic evolution equations on Hilbert spaces with partially observed relaxed controls and their necessary conditions of optimality. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 34 (2014) no. 1, pp. 105-129. http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a5/
[1] N.U. Ahmed, Deterministic and stochastic neutral systems on Banach spaces and their optimal fedback controls, J. Nonlin. Syst. Appl. (2009) 151-160.
[2] N.U. Ahmed, Measure valued solutions for systems governed by neutral differential equations on Banach spaces and their optimal control, Discuss. Math. DICO 33 (2013) 89-109. doi: 10.7151/dmdico.1142.
[3] N.U. Ahmed, Relaxed solutions for stochastic evolution equations on Hilbert space with polynomial growth, Publ. Math. Debrechen 54 (1-2) (1999) 75-101.
[4] N.U. Ahmed, Stochastic neutral evolution equations on Hilbert spaces with partially observed relaxed control and their necessary conditions of optimality, Nonlin. Anal. TMA 101 (2014) 66-79.
[5] N.U. Ahmed, Some Recent Developments in Systems and Control Theory on Infinite Dimensional Banach Spaces, Part 1 2, Proceedings of the 5th International Conference on Optimization and Control with Applications, (Edited by: K.L. Teo, H. Xu and Y. Zhang), Beijing, China, 2012; Publisher: Springer-Verlag (in Print).
[6] N.U. Ahmed, Optimization and Identification of Systems Governed by Evolution Equations on Banach Spaces, Pitman research Notes in Mathematics Series, Vol. 184, Longman Scientific and Technical, U.K; Co-published with John-Wiely Sons, Inc. New York, 1988.
[7] N.U. Ahmed, Semigroup Theory with Applications to Systema and Control, Pitman Research Notes in Mathematics Series, Vol. 246, Longman Scientific and Technical, U.K; Co-published with John-Wiely Sons, Inc. New York, 1991.
[8] N.U. Ahmed, Dynamic Systems and Control with Applications, World Scientific (New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennai, 2006). ISBN: 981-270-053-6
[9] N.U. Ahmed and C.D. Charalambous, Stochastic minimum principle for partially observed systems subject to continuous and jump diffusion processes and drviven by relaxed controls, SIAM J. Control and Optim. 51 (4) (2013) 3235-3257. doi: 10.1137/120885656
[10] S. Bahlali, Necessary and sufficient optimality coditions for relaxed and strict control problems, SIAM J. Control and Optim. 47 (2008) 2078-2095. doi: 10.1137/070681053
[11] N. Dunford and J.T. Schwartz, Linear Operators, Part 1 (Interscience Publishers, Inc., New York, 1958).
[12] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions (Cambridge University Press, 1992). doi: 10.1017/CBO9780511666223
[13] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Vol. 1, Theory (Kluwer Academic publishers, Dordrecht/Boston/London, 1997).
[14] Y. Hu and S. Peng, Adaptive solution of a Backward semilinear stochastic evolution equation, Stoch. Anal. Appl. 9 (4) (1991) 445-459. doi: 10.1080/07362999108809250
[15] W. Wei, Maximum principle for optimal control of neutral stochastic functional differential systems, Science China Math. (to appear)