Delay perturbed evolution problems involving time dependent subdifferential operators
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 34 (2014) no. 1, pp. 61-87.

Voir la notice de l'article provenant de la source Library of Science

We investigate in the present paper, the existence and uniqueness of solutions for functional differential inclusions involving a subdifferential operator in the infinite dimensional setting. The perturbation which contains the delay is single-valued, separately measurable, and separately Lipschitz. We prove, without any compactness condition, that the problem has one and only one solution.
Keywords: Differential inclusions, subdifferential operator, Lipschitz functions, set-valued map, delay, perturbation, absolutely continuous map
@article{DMDICO_2014_34_1_a3,
     author = {Sa{\"\i}di, Soumia and Yarou, Mustapha},
     title = {Delay perturbed evolution problems involving time dependent subdifferential operators},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {61--87},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2014},
     zbl = {1327.34121},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a3/}
}
TY  - JOUR
AU  - Saïdi, Soumia
AU  - Yarou, Mustapha
TI  - Delay perturbed evolution problems involving time dependent subdifferential operators
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2014
SP  - 61
EP  - 87
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a3/
LA  - en
ID  - DMDICO_2014_34_1_a3
ER  - 
%0 Journal Article
%A Saïdi, Soumia
%A Yarou, Mustapha
%T Delay perturbed evolution problems involving time dependent subdifferential operators
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2014
%P 61-87
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a3/
%G en
%F DMDICO_2014_34_1_a3
Saïdi, Soumia; Yarou, Mustapha. Delay perturbed evolution problems involving time dependent subdifferential operators. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 34 (2014) no. 1, pp. 61-87. http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a3/

[1] J.P. Aubin and A. Celina, Differential Inclusions, Set-valued Maps and Viability Theory (Springer-Verlag Berlin Heidelberg, 1984). doi: 10.1007/978-3-642-69512-4

[2] H. Benabdellah, C. Castaing and A. Salvadori, Compactness and discretization methods for differential inclusions and evolution problems, Atti. Sem. Math. Fis. Univ. Modena XLV (1997) 9-51.

[3] M. Bounkhel and M. Yarou, Existence results for first and second order nonconvex sweeping process with delay, Port. Math. 61 (2) (2004) 2007-2030.

[4] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Lecture Notes in Math. (North-Holland/American Elsevier, Amsterdam/New York, 1973).

[5] C. Castaing, A.G. Ibrahim and M. Yarou, Existence problems in second order evolution inclusions: discretization and variational approach, Taiwanese J. Math. 12 (6) (2008) 1435-1477.

[6] C. Castaing, A. Jofré and A. Salvadori, Control problems governed by functional evolution inclusions with Young measures, J. Nonlin. Convex Anal. 5 (2004) 131-152.

[7] C. Castaing and M.D.P Monteiro Marques, Topological properties of solution sets for sweeping processes with delay, Port. Math. 54 (1997) 485-507.

[8] C. Castaing, A. Salvadori and L. Thibault, Functional evolution equations governed by nonconvex sweeping process, J. Nonlin. Convex Anal. 2 (2) (2001), 217-241.

[9] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions. Lecture Notes in Math., 580 (Springer-Verlag, Berlin, Heidelberg, 1977). doi: 10.1007/BFb0087685

[10] J.F. Edmond, Delay perturbed sweeping process, Set-Valued Anal. 14 (2006) 295-317. doi: 10.1007/s11228-006-0021-9

[11] E. Mitidieri and I. Vrabie, Existence for nonlinear functional differential equations, Hiroshima Math. J. 17 (1987) 627-649.

[12] M. Kisielewicz, Differential Inclusions and Optimal Control (Kluwer, Dordrecht, The Netherlands, 1991).

[13] J.C. Peralba, Équations d'évolution dans un espace de Hilbert, associées à des opérateurs sous-différentiels. Thèse de doctorat de spécialité (Languedoc, 1973).

[14] S. Saïdi, L. Thibault and M. Yarou, Relaxation of optimal control problems involving time dependent subdifferential operators, Numerical Funct. Anal. Optimization 34 (10) (2013) 1156-1186. doi: 10.1080/01630563.2013.807287