Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2013_33_2_a5, author = {Loi, Nguyen}, title = {On periodic oscillations for a class of feedback control systems in {Hilbert} spaces}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {205--219}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2013}, zbl = {1300.34148}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a5/} }
TY - JOUR AU - Loi, Nguyen TI - On periodic oscillations for a class of feedback control systems in Hilbert spaces JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2013 SP - 205 EP - 219 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a5/ LA - en ID - DMDICO_2013_33_2_a5 ER -
%0 Journal Article %A Loi, Nguyen %T On periodic oscillations for a class of feedback control systems in Hilbert spaces %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2013 %P 205-219 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a5/ %G en %F DMDICO_2013_33_2_a5
Loi, Nguyen. On periodic oscillations for a class of feedback control systems in Hilbert spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 33 (2013) no. 2, pp. 205-219. http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a5/
[1] R. Bader and W. Kryszewski, Fixed-point index for compositions of set-valued maps with proximally ∞-connected values on arbitrary ANR's, Set-Valued Anal. 2 (3) (1994), 459-480. doi: 10.1007/BF01026835
[2] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, 1976.
[3] Yu.G. Borisovich, B.D. Gel'man, A.D. Myshkis and V.V. Obukhovskii, Introduction to the Theory of Multivalued Maps and Differential inclusions, Second edition, Librokom, Moscow, 2011 (in Russian).
[4] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis and V.V. Obukhovskii, Topological methods in the theory of fixed points of multivalued mappings, (Russian) Uspekhi Mat. Nauk 35 (1980), 59-126. English translation: Russian Math. Surveys 35 (1980), 65-143. doi: 10.1070/RM1980v035n01ABEH001548
[5] K. Borsuk, Theory of Retracts. Monografie Matematyczne, 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967.
[6] I. Ekeland and R. Temam, Convex Analysis and Variation Problems, North Holland, Amsterdam, 1979.
[7] R.E. Gaines and J.L. Mawhin, Coincidence degree and nonlinear differential equations, Lecture Notes in Mathematics, no. 568, Springer-Verlag, Berlin-New York, 1977.
[8] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, 2nd edition. Topological Fixed Point Theory and Its Applications, 4. Springer, Dordrecht, 2006.
[9] L. Górniewicz, A. Granas and W. Kryszewski, On the homotopy method in the fixed point index theory of multi-valued mappings of compact absolute neighborhood retracts, J. Math. Anal. Appl. 161 (2) (1991), 457-473. doi: 10.1016/0022-247X(91)90345-Z
[10] Ph. Hartman, Ordinary Differential Equations, Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA], Classics in Applied Mathematics, 38, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
[11] D.M. Hyman, On decreasing sequences of compact absolute retracts, Fund Math. 64 (1969), 91-97.
[12] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications 7, Walter de Gruyter, Berlin-New York, 2001. doi: 10.1515/9783110870893
[13] N.V. Loi, Method of guiding functions for differential inclusions in a Hilbert space, Differ. Uravn. 46 (10) (2010), 1433-1443 (in Russian); English tranl.: Differ. Equat. 46 (10) (2010), 1438-1447. doi: 10.1134/S0012266110100071
[14] N.V. Loi, V. Obukhovskii and P. Zecca, Non-smooth guiding functions and periodic solutions of functional differential inclusions with infinite delay in Hilbert spaces, Fixed Point Theory 13 (2) (2012), 565-582.
[15] A.D. Myshkis, Generalizations of the theorem on a stationary point of a dynamical system inside a closed trajectory, (Russian) Math. Sb. 34 (1954), 525-540.
[16] V. Obukhovski, P. Zecca, N.V. Loi and S. Kornev, Method of Guiding Functions in Problems of Nonlinear Analysis, Lecture Notes in Math. 2076, Springer, Berlin, 2013. doi: 10.1007/978-3-642-37070-0
[17] L. Schwartz, Cours d'Analyse 1, Second edition, Hermann, Paris, 1981.