On some topological methods in theory of neutral type operator differential inclusions with applications to control systems
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 33 (2013) no. 2, pp. 193-204.

Voir la notice de l'article provenant de la source Library of Science

We consider a neutral type operator differential inclusion and apply the topological degree theory for condensing multivalued maps to justify the question of existence of its periodic solution. By using the averaging method, we apply the abstract result to an inclusion with a small parameter. As example, we consider a delay control system with the distributed control.
Keywords: operator differential inclusion, neutral type, periodic solution, fixed point, multivalued map, condensing map, topological degree, averaging method, control system, distributed control
@article{DMDICO_2013_33_2_a4,
     author = {Kamenskii, Mikhail and Obukhovskii, Valeri and Yao, Jen-Chih},
     title = {On some topological methods in theory of neutral type operator differential inclusions with applications to control systems},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {193--204},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     zbl = {1300.34146},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a4/}
}
TY  - JOUR
AU  - Kamenskii, Mikhail
AU  - Obukhovskii, Valeri
AU  - Yao, Jen-Chih
TI  - On some topological methods in theory of neutral type operator differential inclusions with applications to control systems
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2013
SP  - 193
EP  - 204
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a4/
LA  - en
ID  - DMDICO_2013_33_2_a4
ER  - 
%0 Journal Article
%A Kamenskii, Mikhail
%A Obukhovskii, Valeri
%A Yao, Jen-Chih
%T On some topological methods in theory of neutral type operator differential inclusions with applications to control systems
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2013
%P 193-204
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a4/
%G en
%F DMDICO_2013_33_2_a4
Kamenskii, Mikhail; Obukhovskii, Valeri; Yao, Jen-Chih. On some topological methods in theory of neutral type operator differential inclusions with applications to control systems. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 33 (2013) no. 2, pp. 193-204. http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a4/

[1] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis and V.V. Obukhovskii, Topological methods in the theory of fixed points of multivalued mappings. (Russian) Uspekhi Mat. Nauk 35 (1980), 59-126. English translation: Russian Math. Surveys 35 (1980), 65-143. doi: 10.1070/RM1980v035n01ABEH001548

[2] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis and V.V. Obukhovskii, Introduction to the Theory of Multivalued Maps and Differential Inclusions, (Russian) Second edition, Librokom, Moscow, 2011.

[3] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, 2nd edition, Topological Fixed Point Theory and Its Applications, 4. Springer, Dordrecht, 2006.

[4] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I. Theory, Mathematics and its Applications, 419. Kluwer Academic Publishers, Dordrecht, 1997.

[5] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications, 7. Walter de Gruyter Co., Berlin, 2001. doi: 10.1515/9783110870893

[6] M.A. Krasnosel'skii and P.P. Zabreiko, Geometrical Methods of Nonlinear Analysis, A Series of Comprehensive Studies in Mathematics, 263, Springer-Verlag, Berlin-Heidelberg-New York-Tokio, 1984.

[7] M.A. Krasnoselskii, P.P. Zabreiko, E.I. Pustyl'nik and P.E. Sobolevskii, Integral Operators in Spaces of Summable Functions, Noordhoff International Publishing, Leyden, 1976.