Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2012_32_1_a3, author = {Ahmed, N.U.}, title = {Stochastic diffrential equations on {Banach} spaces and their optimal feedback control}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {87--109}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2012_32_1_a3/} }
TY - JOUR AU - Ahmed, N.U. TI - Stochastic diffrential equations on Banach spaces and their optimal feedback control JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2012 SP - 87 EP - 109 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2012_32_1_a3/ LA - en ID - DMDICO_2012_32_1_a3 ER -
%0 Journal Article %A Ahmed, N.U. %T Stochastic diffrential equations on Banach spaces and their optimal feedback control %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2012 %P 87-109 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2012_32_1_a3/ %G en %F DMDICO_2012_32_1_a3
Ahmed, N.U. Stochastic diffrential equations on Banach spaces and their optimal feedback control. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 32 (2012) no. 1, pp. 87-109. http://geodesic.mathdoc.fr/item/DMDICO_2012_32_1_a3/
[1] N.U. Ahmed, Semigroup Theory with Applications to Systems and Control, Pitman Research Notes in Mathematics series 246 (1999) Longman Scientific and Technical, U.K.
[2] N.U. Ahmed, Generalized solutions of HJB equations applied to stochastic control on Hilbert space, Nonlinear Analysis 54 (2003) 495-523. doi: 10.1016/S0362-546X(03)00109-3
[3] N.U. Ahmed, Optimal relaxed controls for infinite dimensional stochastic systems of Zakai type, SIAM J. Control and Optimization 34 (5) (1996) 1592-1615. doi: 10.1137/S0363012994269119
[4] N.U. Ahmed, Optimal control of ∞-dimensional stochastic systems via generalized solutions of HJB equations, Discuss. Math. Differential Inclusions, Control and Optimization 21 (2001) 97-126.
[5] N.U. Ahmed and K.L. Teo, Optimal Control of Distributed Parameter Systems, North Holland, New York, Oxford, 1981.
[6] L. Cesari, Optimization Theory and Applications, Springer-Verlag, 1983.
[7] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992.
[8] N. Dnford and J.T. Schwartz, Linear Operators, Part 1, Inter Science Publishers, Inc., New York, 1958.
[9] J. Diestel and J.J. Uhl Jr., Vector Measures, in: Mathematical surveys, Vol. 15, American Mathematical Society, Providence, RI, 1977.
[10] H.O. Fattorini, Infinite Dimensional optimization and Control Theory, Encyclopedia of mathematics and its applications, 62, Cambridge University Press, 1999.
[11] F. Gozzi, E. Rouy and A. Swiech, Second order Hamilton-Jacobi equation in Hilbert spaces and stochastic boundary control, SIAM J. Control Optim. 38 (2000) 400-430. doi: 10.1137/S0363012997324909
[12] B. Goldys and B. Maslowski, Ergodic Control of Semilinear Stochastic Equations and Hamilton-Jacobi Equations, preprint, 1998.
[13] P. Mattila and D. Mauldin, Measure and dimension functions: measurability and densities, Math. Proc. Camb. Phil. Soc. 121 (1997) 81-100. doi: 10.1017/S0305004196001089
[14] K.R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York and London, 1967.
[15] A.I. Tulcea and C.I. Tulcea, Topics in the Theory of Lifting, Springer-Verlag, Berlin, Heidelberg, New York, 1969.
[16] A. Weron, On Weak second order and Gaussian random elements, Lecture Notes in Mathematics 526 (1976) 263-272, DOI: 10.1007/BFb0082336, Proceedings of the First International Conference on Probability in Banach Spaces, 20-26 July 1975, Oberwolfach. doi: 10.1007/BFb0082336
[17] J. Motyl, Existence of solutions of functional stochastic inclusions, Dynamic Systems and Applications (DSA) 21 (2012) 331-338.
[18] M. Kozaryn, M.T. Malinowski, M. Michta and K.L. Ŝwiatek, On multivalued stochastic integral equations driven by a Wiener process in the plane, Dynamic Systems and Applications (DSA) 21 (2012) 293-318.