Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2011_31_2_a5, author = {Ahmed, N.}, title = {Weak compactness in the space of operator valued measures $M_ba(\ensuremath{\Sigma},(X,Y))$ and its applications}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {231--247}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2011}, zbl = {1262.46022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a5/} }
TY - JOUR AU - Ahmed, N. TI - Weak compactness in the space of operator valued measures $M_ba(Σ,(X,Y))$ and its applications JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2011 SP - 231 EP - 247 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a5/ LA - en ID - DMDICO_2011_31_2_a5 ER -
%0 Journal Article %A Ahmed, N. %T Weak compactness in the space of operator valued measures $M_ba(Σ,(X,Y))$ and its applications %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2011 %P 231-247 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a5/ %G en %F DMDICO_2011_31_2_a5
Ahmed, N. Weak compactness in the space of operator valued measures $M_ba(Σ,(X,Y))$ and its applications. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 31 (2011) no. 2, pp. 231-247. http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a5/
[1] J. Diestel and J.J. Uhl Jr, Vector Measures, American Mathematical Society, Providence, Rhode Island, 1977.
[2] N. Dunford and J.T. Schwartz, Linear Operators, Part 1, General Theory, Second Printing, 1964.
[3] J.K. Brooks, Weak compactness in the space of vector measures, Bulletin of the American Mathematical Society 78 (2) (1972), 284-287. doi: 10.1090/S0002-9904-1972-12960-4
[4] T. Kuo, Weak convergence of vector measures on F-spaces, Math. Z. 143 (1975), 175-180. doi: 10.7151/dmdico.1136
[5] I. Dobrakov, On integration in Banach spaces I, Czechoslov Math. J. 20 (95) (1970), 511-536.
[6] I. Dobrakov, On integration in Banach spaces IV, Czechoslov Math. J. 30 (105) (1980), 259-279.
[7] J.K. Brooks and P.W. Lewis, Linear operators and vector measures, Trans. American Math. Soc. 192 (1974), 139-162. doi: 10.1090/S0002-9947-1974-0338821-5
[8] N.U. Ahmed, Vector and operator valued measures as controls for infinite dimensional systems: optimal control Diff. Incl., Control and Optim. 28 (2008), 95-131.
[9] N.U. Ahmed, Impulsive perturbation of C₀-semigroups by operator valued measures, Nonlinear Funct. Anal. Appl. 9 (1) (2004), 127-147.
[10] N.U. Ahmed, Weak compactness in the space of operator valued measures, Publicationes Mathematicae, Debrechen, (PMD) 77 (3-4) (2010), 399-413.
[11] N.U. Ahmed, Some remarks on the dynamics of impulsive systems in Banach spaces, dynamics of continuous, Discrete and Impulsive Systems 8 (2001), 261-274.