Uniformly bounded Nemytskij operators generated by set-valued functions between generalized Hölder function spaces
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 31 (2011) no. 2, pp. 183-198.

Voir la notice de l'article provenant de la source Library of Science

We prove that the generator of any uniformly bounded set-valued Nemytskij operator acting between generalized Hölder function metric spaces, with nonempty compact and convex values is an affine function with respect to the function variable.
Keywords: Nemytskij composition operator, uniformly bounded operator, set-valued function, generalized Hölder function metric space
@article{DMDICO_2011_31_2_a3,
     author = {Matkowski, Janusz and Wr\'obel, Ma{\l}gorzata},
     title = {Uniformly bounded {Nemytskij} operators generated by set-valued functions between generalized {H\"older} function spaces},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {183--198},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2011},
     zbl = {1264.47070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a3/}
}
TY  - JOUR
AU  - Matkowski, Janusz
AU  - Wróbel, Małgorzata
TI  - Uniformly bounded Nemytskij operators generated by set-valued functions between generalized Hölder function spaces
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2011
SP  - 183
EP  - 198
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a3/
LA  - en
ID  - DMDICO_2011_31_2_a3
ER  - 
%0 Journal Article
%A Matkowski, Janusz
%A Wróbel, Małgorzata
%T Uniformly bounded Nemytskij operators generated by set-valued functions between generalized Hölder function spaces
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2011
%P 183-198
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a3/
%G en
%F DMDICO_2011_31_2_a3
Matkowski, Janusz; Wróbel, Małgorzata. Uniformly bounded Nemytskij operators generated by set-valued functions between generalized Hölder function spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 31 (2011) no. 2, pp. 183-198. http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a3/

[1] J. Appell and P.P. Zabrejko, Nonlinear Superposition Operators, Cambridge University Press, 1990. doi:10.1017/CBO9780511897450

[2] A. Azócar, J.A. Guerrero, J. Matkowski and N. Merentes, Uniformly continuous set-valued composition operators in the space of continuous functions of bounded variation in the sense of Wiener, Opuscula Math. 30 (2010), 53-60.

[3] V.V. Chistyakov, Lipschitzian superposition operators between spaces of functions of bounded generalized variation with weight, J. Appl. Anal. 6 (2000), 173-186. doi:10.1515/JAA.2000.173

[4] J.A. Guerrero, H. Leiva, J. Matkowski and N. Merentes, Uniformly continuous composition operators in the space of bounded φ-variation functions, Nonlinear Anal. 72 (2010), 3119-3123. doi:10.1016/j.na.2009.11.051

[5] J.J. Ludew, On Lipschitzian operators of substitution generated by set-valued functions, Opuscula Math. 27 (1) (2007), 13-24.

[6] J. Matkowski, Functional equations and Nemytskij operators, Funkc. Ekvacioj Ser. Int. 25 (1982), 127-132.

[7] J. Matkowski, Lipschitzian composition operators in some function spaces, Nonlin. Anal. Theory Meth. Appl. 30 (2) (1997), 719-726. doi:10.1016/S0362-546X(96)00287-8

[8] J. Matkowski, Remarks on Lipschitzian mappings and some fixed point theorems, Banach J. Math. Anal. 2 (2007), 237-244 (electronic), www.math-analysis.org.

[9] J. Matkowski, Uniformly continuous superposition operators in the spaces of differentiable functions and absolutely continuous functions, Internat. Ser. Numer. Math. 157 (2008), 155-155.

[10] J. Matkowski, Uniformly continuous superposition operators in the space of Hölder functions, J. Math. Anal. Appl. 359 (2009), 56-61. doi:10.1016/j.jmaa.2009.05.020

[11] J. Matkowski, Uniformly continuous superposition operators in the spaces of bounded variation functions, Math. Nachr. 283 (7) (2010), 1060-1064.

[12] J. Matkowski, Uniformly bounded composition operators between general Lipschitz function normed spaces, (accepted), Top. Math. Nonl. Anal.

[13] J. Matkowski and J. Miś, On a charakterization of Lipschitzian operators of substitution in the space BV[a,b], Math. Nachr. 117 (1984), 155-159. doi:10.1002/mana.3211170111

[14] K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Naukowe Politechniki Łódzkiej, Mat. 559, Rozprawy Naukowe 114, 1989.

[15] A. Smajdor and W. Smajdor, Jensen equation and Nemytskii operator for set-valued functions, Rad. Math. 5 (1989), 311-320.

[16] W. Smajdor, Note on Jensen and Pexider functional equations, Demonstratio Math. 32 (1999), 363-376.