Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2011_31_2_a3, author = {Matkowski, Janusz and Wr\'obel, Ma{\l}gorzata}, title = {Uniformly bounded {Nemytskij} operators generated by set-valued functions between generalized {H\"older} function spaces}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {183--198}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2011}, zbl = {1264.47070}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a3/} }
TY - JOUR AU - Matkowski, Janusz AU - Wróbel, Małgorzata TI - Uniformly bounded Nemytskij operators generated by set-valued functions between generalized Hölder function spaces JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2011 SP - 183 EP - 198 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a3/ LA - en ID - DMDICO_2011_31_2_a3 ER -
%0 Journal Article %A Matkowski, Janusz %A Wróbel, Małgorzata %T Uniformly bounded Nemytskij operators generated by set-valued functions between generalized Hölder function spaces %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2011 %P 183-198 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a3/ %G en %F DMDICO_2011_31_2_a3
Matkowski, Janusz; Wróbel, Małgorzata. Uniformly bounded Nemytskij operators generated by set-valued functions between generalized Hölder function spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 31 (2011) no. 2, pp. 183-198. http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a3/
[1] J. Appell and P.P. Zabrejko, Nonlinear Superposition Operators, Cambridge University Press, 1990. doi:10.1017/CBO9780511897450
[2] A. Azócar, J.A. Guerrero, J. Matkowski and N. Merentes, Uniformly continuous set-valued composition operators in the space of continuous functions of bounded variation in the sense of Wiener, Opuscula Math. 30 (2010), 53-60.
[3] V.V. Chistyakov, Lipschitzian superposition operators between spaces of functions of bounded generalized variation with weight, J. Appl. Anal. 6 (2000), 173-186. doi:10.1515/JAA.2000.173
[4] J.A. Guerrero, H. Leiva, J. Matkowski and N. Merentes, Uniformly continuous composition operators in the space of bounded φ-variation functions, Nonlinear Anal. 72 (2010), 3119-3123. doi:10.1016/j.na.2009.11.051
[5] J.J. Ludew, On Lipschitzian operators of substitution generated by set-valued functions, Opuscula Math. 27 (1) (2007), 13-24.
[6] J. Matkowski, Functional equations and Nemytskij operators, Funkc. Ekvacioj Ser. Int. 25 (1982), 127-132.
[7] J. Matkowski, Lipschitzian composition operators in some function spaces, Nonlin. Anal. Theory Meth. Appl. 30 (2) (1997), 719-726. doi:10.1016/S0362-546X(96)00287-8
[8] J. Matkowski, Remarks on Lipschitzian mappings and some fixed point theorems, Banach J. Math. Anal. 2 (2007), 237-244 (electronic), www.math-analysis.org.
[9] J. Matkowski, Uniformly continuous superposition operators in the spaces of differentiable functions and absolutely continuous functions, Internat. Ser. Numer. Math. 157 (2008), 155-155.
[10] J. Matkowski, Uniformly continuous superposition operators in the space of Hölder functions, J. Math. Anal. Appl. 359 (2009), 56-61. doi:10.1016/j.jmaa.2009.05.020
[11] J. Matkowski, Uniformly continuous superposition operators in the spaces of bounded variation functions, Math. Nachr. 283 (7) (2010), 1060-1064.
[12] J. Matkowski, Uniformly bounded composition operators between general Lipschitz function normed spaces, (accepted), Top. Math. Nonl. Anal.
[13] J. Matkowski and J. Miś, On a charakterization of Lipschitzian operators of substitution in the space BV[a,b], Math. Nachr. 117 (1984), 155-159. doi:10.1002/mana.3211170111
[14] K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Naukowe Politechniki Łódzkiej, Mat. 559, Rozprawy Naukowe 114, 1989.
[15] A. Smajdor and W. Smajdor, Jensen equation and Nemytskii operator for set-valued functions, Rad. Math. 5 (1989), 311-320.
[16] W. Smajdor, Note on Jensen and Pexider functional equations, Demonstratio Math. 32 (1999), 363-376.