On some equations y'(x) = f(x,y(h(x)+g(y(x))))
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 31 (2011) no. 2, pp. 173-182
Cet article a éte moissonné depuis la source Library of Science
In [4] W. Li and S.S. Cheng prove a Picard type existence and uniqueness theorem for iterative differential equations of the form y'(x) = f(x,y(h(x)+g(y(x)))). In this article I show some analogue of this result for a larger class of functions f (also discontinuous), in which a unique differentiable solution of considered Cauchy's problem is obtained.
Keywords:
iterative differential equation, existence and uniqueness theorem, Picard approximation, derivative, (S)-continuity, (S)-path continuity
@article{DMDICO_2011_31_2_a2,
author = {Grande, Zbigniew},
title = {On some equations y'(x) = f(x,y(h(x)+g(y(x))))},
journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
pages = {173--182},
year = {2011},
volume = {31},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a2/}
}
TY - JOUR AU - Grande, Zbigniew TI - On some equations y'(x) = f(x,y(h(x)+g(y(x)))) JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2011 SP - 173 EP - 182 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a2/ LA - en ID - DMDICO_2011_31_2_a2 ER -
Grande, Zbigniew. On some equations y'(x) = f(x,y(h(x)+g(y(x)))). Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 31 (2011) no. 2, pp. 173-182. http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a2/
[1] A.M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659, Springer-Verlag, Berlin, 1978.
[2] Z. Grande, A theorem about Carathéodory's superposition, Math. Slovaca 42 (1992), 443-449.
[3] Z. Grande, When derivatives of solutions of Cauchy's problem are (S)-continuous?, Tatra Mt. Math. Publ. 34 (2006), 173-177.
[4] W. Li and S.S. Cheng, A Picard theorem for iterative differential equations, Demonstratio Math. 42 (2) 2009, 371-380.
[5] B.S. Thomson, Real Functions, Lectures Notes in Math., Vol. 1170, Springer-Verlag, Berlin, 1980.