Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2011_31_1_a4, author = {Abbas, Sa{\"\i}d and Benchohra, Mouffak and G\'orniewicz, Lech}, title = {Fractional order impulsive partial hyperbolic differential inclusions with variable times}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {91--114}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2011}, zbl = {1269.26002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a4/} }
TY - JOUR AU - Abbas, Saïd AU - Benchohra, Mouffak AU - Górniewicz, Lech TI - Fractional order impulsive partial hyperbolic differential inclusions with variable times JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2011 SP - 91 EP - 114 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a4/ LA - en ID - DMDICO_2011_31_1_a4 ER -
%0 Journal Article %A Abbas, Saïd %A Benchohra, Mouffak %A Górniewicz, Lech %T Fractional order impulsive partial hyperbolic differential inclusions with variable times %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2011 %P 91-114 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a4/ %G en %F DMDICO_2011_31_1_a4
Abbas, Saïd; Benchohra, Mouffak; Górniewicz, Lech. Fractional order impulsive partial hyperbolic differential inclusions with variable times. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 31 (2011) no. 1, pp. 91-114. http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a4/
[1] S. Abbas and M. Benchohra, Partial hyperbolic differential equations with finite delay involving the Caputo fractional derivative, Commun. Math. Anal. 7 (2009), 62-72.
[2] S. Abbas and M. Benchohra, Darboux problem for perturbed partial differential equations of fractional order with finite delay, Nonlinear Anal. Hybrid Syst. 3 (2009), 597-604. doi: 10.1016/j.nahs9.05.001.200
[3] S. Abbas and M. Benchohra, Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order, Nonlinear Anal. Hybrid Syst. 4 (2010), 406-413. doi: 10.1016/j.nahs.2009.10.004
[4] S. Abbas and M. Benchohra, The method of upper and lower solutions for partial hyperbolic fractional order differential inclusions with impulses, Discuss. Math. Differ. Incl. Control Optim. 30 (1) (2010), 141-161. empty
[5] S. Abbas and M. Benchohra, Existence theory for impulsive partial hyperbolic differential equations of fractional order at variable times, Fixed Point Theory, (to appear).
[6] S. Abbas, M. Benchohra and L. Górniewicz, Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative, Sci. Math. Jpn. online e- 2010, 271-282.
[7] R.P Agarwal, M. Benchohra and S. Hamani, A survey on existence result for boundary value problems of nonlinear fractional differential equations and inclusions, Acta. Appl. Math. 109 (3) (2010), 973-1033. doi: 10.1007/s10440-008-9356-6
[8] A. Belarbi, M. Benchohra and A. Ouahab, Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces, Appl. Anal. 85 (2006), 1459-1470. doi: 10.1080/00036810601066350
[9] M. Belmekki, M. Benchohra and L. Górniewicz, Functional differential equations with fractional order and infinite delay, Fixed Point Theory 9 (2008), 423-439.
[10] M. Benchohra, J.R. Graef and S. Hamani, Existence results for boundary value problems with non-linear fractional differential equations, Appl. Anal. 87 (7) (2008), 851-863. doi: 10.1080/00036810802307579
[11] M. Benchohra, S. Hamani and S.K. Ntouyas, Boundary value problems for differential equations with fractional order, Surv. Math. Appl. 3 (2008), 1-12.
[12] M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, New York, NY, USA, 2006. doi: 10.1155/9789775945501
[13] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for functional differential equations of fractional order, J. Math. Anal. Appl. 338 (2008), 1340-1350. doi: 10.1016/j.jmaa.2007.06.021
[14] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992. doi: 10.1515/9783110874228
[15] K. Diethelm and A.D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in: 'Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties' (F. Keil, W. Mackens, H. Voss and J. Werther, Eds), pp. 217-224, Springer-Verlag, Heidelberg, 1999.
[16] K. Diethelm and N.J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248. doi: 10.1006/jmaa.2000.7194
[17] L. Gaul, P. Klein and S. Kempfle, Damping description involving fractional operators, Mech. Systems Signal Processing 5 (1991), 81-88. doi: 10.1016/0888-3270(91)90016-X
[18] W.G. Glockle and T.F. Nonnenmacher, A fractional calculus approach of selfsimilar protein dynamics, Biophys. J. 68 (1995), 46-53. doi: 10.1016/S0006-3495(95)80157-8
[19] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
[20] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications, 495, Kluwer Academic Publishers, Dordrecht, 1999.
[21] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. empty
[22] A.A. Kilbas, B. Bonilla and J. Trujillo, Nonlinear differential equations of fractional order in a space of integrable functions, Dokl. Ross. Akad. Nauk 374 (4) (2000), 445-449.
[23] A.A. Kilbas and S.A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations 41 (2005), 84-89. doi: 10.1007/s10625-005-0137-y
[24] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.
[25] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
[26] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
[27] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in: 'Fractals and Fractional Calculus in Continuum Mechanics' ( A. Carpinteri and F. Mainardi, Eds), pp. 291-348, Springer-Verlag, Wien, 1997.
[28] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
[29] I. Podlubny, I. Petraš, B.M. Vinagre, P. O'Leary and L. Dorčak, Analogue realizations of fractional-order controllers, fractional order calculus and its applications, Nonlinear Dynam. 29 (2002), 281-296. doi: 10.1023/A:1016556604320
[30] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.
[31] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995. doi: 10.1142/9789812798664
[32] N.P. Semenchuk, On one class of differential equations of noninteger order, Differents. Uravn. 10 (1982), 1831-1833.
[33] A.N. Vityuk, Existence of solutions of partial differential inclusions of fractional order, Izv. Vyssh. Uchebn., Ser. Mat. 8 (1997), 13-19.
[34] A.N. Vityuk and A.V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscil. 7 (3) (2004), 318-325. doi: 10.1007/s11072-005-0015-9