Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2011_31_1_a2, author = {Benedetti, Irene and Obukhovskii, Valeri and Zecca, Pietro}, title = {Controllability for impulsive semilinear functional differential inclusions with a non-compact evolution operator}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {39--69}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2011}, zbl = {1264.93022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a2/} }
TY - JOUR AU - Benedetti, Irene AU - Obukhovskii, Valeri AU - Zecca, Pietro TI - Controllability for impulsive semilinear functional differential inclusions with a non-compact evolution operator JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2011 SP - 39 EP - 69 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a2/ LA - en ID - DMDICO_2011_31_1_a2 ER -
%0 Journal Article %A Benedetti, Irene %A Obukhovskii, Valeri %A Zecca, Pietro %T Controllability for impulsive semilinear functional differential inclusions with a non-compact evolution operator %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2011 %P 39-69 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a2/ %G en %F DMDICO_2011_31_1_a2
Benedetti, Irene; Obukhovskii, Valeri; Zecca, Pietro. Controllability for impulsive semilinear functional differential inclusions with a non-compact evolution operator. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 31 (2011) no. 1, pp. 39-69. http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a2/
[1] N. Abada, M. Benchohra, H. Hammouche and A. Ouahab, Controllability of impulsive semilinear functional inclusions with finite delay in Fréchet spaces, Discuss. Math. Differ. Incl. Control Optim. 27 (2) (2007), 329-347. doi: 10.7151/dmdico.1088
[2] N. Abada, M. Benchohra and H. Hammouche, Existence and controllability results for impulsive partial functional differential inclusions, Nonlinear Analysis T.M.A. 69 (2008), 2892-2909. empty
[3] K. Balachandran and J.P. Dauer, Controllability of nonlinear systems in Banach spaces: a survey, J. Optim. Theory Appl. 115 (1) (2002), 7-28. doi: 10.1023/A:1019668728098
[4] M. Benchora, L. Górniewicz, S.K. Ntouyas and A. Ouahab, Controllability results for impulsive differential inclusions, Reports on Mathematical Physics 54 (2) (2004), 211-228. doi: 10.1016/S0034-4877(04)80015-6
[5] M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusions, Contemporary Mathematics and Its Applications, 2. Hindawi Publishing Corporation, New York, 2006. doi: 10.1155/9789775945501
[6] I. Benedetti, An existence result for impulsive functional differential inclusions in Banach spaces, Discuss. Math. Diff. Incl. Contr. Optim. 24 (2004), 13-30. doi: 10.7151/dmdico.1049
[7] I. Benedetti and P. Rubbioni, Existence of solutions on compact and non-compact intervals for semilinear impulsive differential inclusions with delay, Topol. Methods Nonlinear Anal. 32 (2) (2008), 227-245.
[8] T. Cardinali and P. Rubbioni, On the existence of mild solutions of semilinear evolution differential inclusions, J. Math. Anal. Appl. 308 (2) (2005), 620-635. doi: 10.1016/j.jmaa.2004.11.049
[9] T. Cardinali and P. Rubbioni, Mild solutions for impulsive semilinear evolution differential inclusions, J. Appl. Funct. Anal. 1 (3) (2006), 303-325.
[10] T. Cardinali and P. Rubbioni, Impulsive semilinear differential inclusions: topological structure of the solutions set and solutions on non compact domains, Nonlinear Anal. T.M.A. (in press).
[11] Y.K. Chang, Controllability of impulsive functional differential inclusions with infinite delay in Banach spaces, J. Appl. Math. Comput. 25 (1-2) (2007), 137-154. doi: 10.1007/BF02832343
[12] K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Text in Mathematics, 194, Springer Verlag, New York, 2000.
[13] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Ser. Nonlinear Anal. Appl. 7, Walter de Gruyter, Berlin-New York, 2001. doi: 10.1515/9783110870893
[14] S.G. Krein, Linear Differential Equations in Banach Spaces, Amer. Math. Soc., Providence, 1971.
[15] W. Kryszewski and S. Plaskacz, Periodic solutions to impulsive differential inclusions with constraints, Nonlinear Anal. 65 (9) (2006), 1794-1804. empty
[16] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, Series in Modern Applied Math., 6, World Scientific Publ. Co., Inc., Teaneck, 1989.
[17] B. Liu, Controllability of impulsive neutral functional differential inclusions with infinite delay, Nonlinear Anal. 60 (8) (2005), 1533-1552. doi: 10.1016/j.na.2004.11.022
[18] V. Obukhovski and P. Zecca, Controllability for systems governed by semilinear differential inclusions in a Banach space with a non-compact semigroup, Nonlinear Anal. 70 (9) (2009), 3424-3436. doi: 10.1016/j.na.2008.05.009
[19] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1
[20] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific series on Nonlinear Science, Series A: Monographs and Treatises, 14, World Scientific Publishing Co., Inc., River Edge, NJ, 1995.
[21] R. Triggiani, A note on the lack of exact controllability for mild solutions in Banach spaces, SIAM J. Control Optim. 15 (3) (1977), 407-411. doi: 10.1137/0315028
[22] R. Triggiani, Addendum: 'A note on the lack of exact controllability for mild solutions in Banach spaces', SIAM J. Control Optim. 18 (1) (1980), 98-99. doi: 10.1137/0318007
[23] W. Zhang and M. Fan, Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Math. Comput. Modelling 39 (4-5) (2004), 479-493. doi: 10.1016/S0895-7177(04)90519-5