Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2011_31_1_a1, author = {Martins, Nat\'alia and Torres, Delfim}, title = {Necessary conditions for linear noncooperative {N-player} delta differential games on time scales}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {23--37}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2011}, zbl = {1258.49064}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a1/} }
TY - JOUR AU - Martins, Natália AU - Torres, Delfim TI - Necessary conditions for linear noncooperative N-player delta differential games on time scales JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2011 SP - 23 EP - 37 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a1/ LA - en ID - DMDICO_2011_31_1_a1 ER -
%0 Journal Article %A Martins, Natália %A Torres, Delfim %T Necessary conditions for linear noncooperative N-player delta differential games on time scales %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2011 %P 23-37 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a1/ %G en %F DMDICO_2011_31_1_a1
Martins, Natália; Torres, Delfim. Necessary conditions for linear noncooperative N-player delta differential games on time scales. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 31 (2011) no. 1, pp. 23-37. http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a1/
[1] H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati equations. In control and systems theory, Systems Control: Foundations Applications, Birkhäuser Verlag, Basel, 2003.
[2] Z. Bartosiewicz and E. Pawluszewicz, Realizations of linear control systems on times scales, Control and Cybernetics 35 (4) (2006), 769-786.
[3] M. Bohner and A. Peterson, Dynamic equations on time scales, An introduction with applications, Birkhäuser Boston, Inc., Boston, MA, 2001.
[4] M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-0-8176-8230-9
[5] R.A.C. Ferreira and D.F.M. Torres, Remarks on the calculus of variations on time scales, Int. J. Ecol. Econ. Stat. 9 F07 (2007), 65-73.
[6] R.A.C. Ferreira and D.F.M. Torres, Higher-order calculus of variations on time scales, Mathematical control theory and finance, (Springer, Berlin, 2008), 149-159.
[7] R.A.C. Ferreira and D.F.M. Torres, Necessary optimality conditions for the calculus of variations on time scales, arXiv:0704.0656.
[8] S. Hilger, Ein Ma{ßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universitäat Würzburg, 1988.
[9] S. Hilger, Differential and difference calculus- unified! Proceedings of the Second World Congress on Nonlinear Analysts, Part 5 (Athens, 1996). Nonlinear Analysis 30 (5) (1997), 2683-2694. doi: 10.1016/S0362-546X(96)00204-0
[10] G. Jank, Introduction to non-cooperative dynamical game theory, University of Aveiro, 2007 (personal notes).
[11] G. Leitmann, Cooperative and non-cooperative many players differential games, Course held at the Department of Automation and Information, July 1973. International Centre for Mechanical Sciences, Courses and Lectures No. 190, Wien - New York: Springer-Verlag, 1974.
[12] L.S. Pontryagin, V.G. Boltyanskij, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes, Translated from Russian by K.N. Trirogoff; edited by L.W. Neustadt, Interscience Publishers John Wiley Sons, Inc., New York-London, 1962.