Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2011_31_1_a0, author = {Malinowski, Marek}, title = {Peano type theorem for random fuzzy initial value problem}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {5--22}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2011}, zbl = {1266.34009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a0/} }
TY - JOUR AU - Malinowski, Marek TI - Peano type theorem for random fuzzy initial value problem JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2011 SP - 5 EP - 22 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a0/ LA - en ID - DMDICO_2011_31_1_a0 ER -
%0 Journal Article %A Malinowski, Marek %T Peano type theorem for random fuzzy initial value problem %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2011 %P 5-22 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a0/ %G en %F DMDICO_2011_31_1_a0
Malinowski, Marek. Peano type theorem for random fuzzy initial value problem. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 31 (2011) no. 1, pp. 5-22. http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a0/
[1] R.P. Agarwal, D. O'Regan and V. Lakshmikantham, A stacking theorem approach for fuzzy differential equations, Nonlinear Analysis 55 (2003), 299-312. doi: 10.1016/S0362-546X(03)00241-4
[2] R.P. Agarwal, D. O'Regan and V. Lakshmikantham, Viability theory and fuzzy differential equations, Fuzzy Sets and Systems 151 (2005), 563-580. doi: 10.1016/j.fss.2004.08.008
[3] J.P. Aubin and H. Frankowska, Set-valued Analysis, Birkhäuser, Boston, 1990.
[4] B. Bede, T.G. Bhaskar and V. Lakshmikantham, Perspectives of fuzzy initial value problems, Communications in Applied Analysis 11 (2007), 339-358.
[5] B. Bede and S.G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems 151 (2005), 581-599. doi: 10.1016/j.fss.2004.08.001
[6] B. Bede, I.J. Rudas and A.L. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Information Sciences 177 (2007), 1648-1662. doi: 10.1016/j.ins.2006.08.021
[7] T.G. Bhaskar, V. Lakshmikantham and V. Devi, Revisiting fuzzy differential equations, Nonlinear Analysis 58 (2004), 351-358. doi: 10.1016/j.na.2004.05.007
[8] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Springer Verlag, Berlin, 1977.
[9] Y. Chalco-Cano and H. Román-Flores, On new solutions of fuzzy differential equations, Chaos Solitons Fractals 38 (2008), 112-119. doi: 10.1016/j.chaos.2006.10.043
[10] P. Diamond and P. Kloeden, Metric Spaces of Fuzzy Sets: Theory and Applications, World Scientific, Singapore, 1994.
[11] P. Diamond, Stability and periodicity in fuzzy differential equations, IEEE Trans. Fuzzy Systems 8 (2000), 583-590. empty
[12] W. Fei, Existence and uniqueness of solution for fuzzy random differential equations with non-Lipschitz coefficients, Information Sciences 177 (2007), 4329-4337. doi: 10.1016/j.ins.2007.03.004
[13] Y. Feng, Fuzzy stochastic differential systems, Fuzzy Sets and Systems 115 (2000), 351-363. doi: 10.1016/S0165-0114(98)00389-3
[14] E. Hüllermeier, An approach to modelling and simulation of uncertain dynamical systems, Int. J. Uncertainty Fuzziness Knowledge-Based Syst. 5 (1997), 117-137. doi: 10.1142/S0218488597000117
[15] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems 24 (1987), 301-317. doi: 10.1016/0165-0114(87)90029-7
[16] O. Kaleva, The Cauchy problem for fuzzy differential equations, Fuzzy Sets and Systems 35 (1990), 389-396. doi: 10.1016/0165-0114(90)90010-4
[17] O. Kaleva, A note on fuzzy differential equations, Nonlinear Analysis 64 (2006), 895-900. doi: 10.1016/j.na.2005.01.003
[18] J.H. Kim, On fuzzy stochastic differential equations, J. Korean Math. Soc. 42 (2005), 153-169. doi: 10.4134/JKMS.2005.42.1.153
[19] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ., Dordrecht, 1991.
[20] V. Lakshmikantham, S. Leela and A.S. Vatsala, Interconnection between set and fuzzy differential equations, Nonlinear Analysis 54 (2003), 351-360. doi: 10.1016/S0362-546X(03)00067-1
[21] V. Lakshmikantham and R.N. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions, Taylor Francis, London, 2003. doi: 10.1201/9780203011386
[22] V. Lakshmikantham and A.A. Tolstonogov, Existence and interrelation between set and fuzzy differential equations, Nonlinear Analysis 55 (2003), 255-268. doi: 10.1016/S0362-546X(03)00228-1
[23] Sh. Li and A. Ren, Representation theorems, set-valued and fuzzy set-valued Ito integral, Fuzzy Sets and Systems 158 (2007), 949-962. doi: 10.1016/j.fss.2006.12.004
[24] M.T. Malinowski, On random fuzzy differential equations, Fuzzy Sets and Systems 160 (2009), 3152-3165. doi: 10.1016/j.fss.2009.02.003
[25] M.T. Mizukoshi, L.C. Barros, Y. Chalco-Cano, H. Román-Flores and R.C. Bassanezi, Fuzzy differential equations and the extension principle, Information Sciences 177 (2007), 3627-3635. doi: 10.1016/j.ins.2007.02.039
[26] C.V. Negoita and D.A. Ralescu, Applications of Fuzzy Sets to System Analysis, Wiley, New York, 1975.
[27] J.J. Nieto, The Cauchy problem for continuous fuzzy differential equations, Fuzzy Sets and Systems 102 (1999), 259-262. doi: 10.1016/S0165-0114(97)00094-8
[28] J.J. Nieto and R. Rodríguez-López, Bounded solutions for fuzzy differential and integral equations, Chaos Solitons Fractals 27 (2006), 1376-1386. doi: 10.1016/j.chaos.2005.05.012
[29] D. O'Regan, V. Lakshmikantham and J.J. Nieto, Initial and boundary value problems for fuzzy differential equations, Nonlinear Analysis 54 (2003), 405-415. doi: 10.1016/S0362-546X(03)00097-X
[30] M.L. Puri and D.A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl. 91 (1983), 552-558. doi: 10.1016/0022-247X(83)90169-5
[31] M.L. Puri and D.A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986), 409-422. doi: 10.1016/0022-247X(86)90093-4
[32] R. Rodríguez-López, Periodic boundary value problems for impulsive fuzzy differential equations, Fuzzy Sets and Systems 159 (2008), 1384-1409. doi: 10.1016/j.fss.2007.09.005
[33] R. Rodríguez-López, Monotone method for fuzzy differential equations, Fuzzy Sets and Systems 159 (2008), 2047-2076. doi: 10.1016/j.fss.2007.12.020
[34] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems 24 (1987), 319-330. doi: 10.1016/0165-0114(87)90030-3
[35] J. Zhang, Set-valued stochastic integrals with respect to a real valued martingale, in: Soft Methods for Handling Variability and Imprecision, Springer, Berlin 2008, 253-259.