Optimal design of cylindrical shells
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 2, pp. 253-267.

Voir la notice de l'article provenant de la source Library of Science

The present paper studies an optimization problem of dynamically loaded cylindrical tubes. This is a problem of linear elasticity theory. As we search for the optimal thickness of the tube which minimizes the displacement under forces, this is a problem of shape optimization. The mathematical model is given by a differential equation (ODE and PDE, respectively); the mechanical problem is described as an optimal control problem. We consider both the stationary (time independent) and the transient (time dependent) case. P. Nestler derives the model-equations from the Mindlin and Reissner hypotheses. Then, necessary optimality conditions for the optimal control problem are given. Numerical solutions are obtained by FEM, numerical examples are presented.
Keywords: linear elasticity, shell theory, cylindrical tube, optimal control, shape optimization
@article{DMDICO_2010_30_2_a5,
     author = {Nestler, Peter and Schmidt, Werner},
     title = {Optimal design of cylindrical shells},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {253--267},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2010},
     zbl = {1238.49058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2010_30_2_a5/}
}
TY  - JOUR
AU  - Nestler, Peter
AU  - Schmidt, Werner
TI  - Optimal design of cylindrical shells
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2010
SP  - 253
EP  - 267
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2010_30_2_a5/
LA  - en
ID  - DMDICO_2010_30_2_a5
ER  - 
%0 Journal Article
%A Nestler, Peter
%A Schmidt, Werner
%T Optimal design of cylindrical shells
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2010
%P 253-267
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2010_30_2_a5/
%G en
%F DMDICO_2010_30_2_a5
Nestler, Peter; Schmidt, Werner. Optimal design of cylindrical shells. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 2, pp. 253-267. http://geodesic.mathdoc.fr/item/DMDICO_2010_30_2_a5/

[1] V. Azhmyakov, J. Lellep and W. Schmidt, On the optimal design of elastic beams, Struct. Multidisc. Optim. 27 (2004), 80-88. doi: 10.1007/s00158-003-0352-1

[2] F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen (Vieweg Verlag, Wiesbaden, 2005).

[3] D. Braess, Finite Elemente (Springer Verlag, Berlin, Heidelberg, New York, 1997).

[4] D. Chapelle and K.J. Bathe, The Finite Element Analysis of Shells - Fundamentals (Springer Verlag, Berlin, Heidelberg, 2003). doi: 10.1007/978-3-662-05229-7

[5] J. Wloka, Partielle Differentialgleichungen (Teubner Verlag, Stuttgart, 1982). doi: 10.1007/978-3-322-96662-9

[6] St.P. Timoshenko, Schwingungsprobleme der Technik (J.-Springer-Verlag, 1932).

[7] R. Hill, The mathematical theory of plasticity (Oxford Clarendon Press, 1950).

[8] G. Olenev, On optimal location of the additional support for an impulsively loaded rigid-plastic cylindrical shell, Trans. Tartu Univ. 772 (1987), 110-120.

[9] Ü. Lepik and T. Lepikult, Automated calculation and optimal design of rigid-plastic beams under dynamic loading, Int. J. Impact Eng. 6 (1987), 87-99. doi: 10.1016/0734-743X(87)90012-1

[10] J. Lellep, Optimization of inelastic cylindrical shells, Eng. Optimization 29 (1997), 359-375. doi: 10.1080/03052159708941002

[11] T. Lepikult, W.H. Schmidt and H. Werner, Optimal design of rigid-plastic beams subjected to dynamical loading, Springer Verlag, Structural Optimization 18 (1999), 116-125. doi: 10.1007/BF01195986

[12] J. Lellep, Optimal design of plastic reinforced cylindrical shells, Control-Theory and Advanced Technology 5 (2) (1989), 119-135.

[13] P. Nestler, Calculation of deformation of a cylindrical shell, Preprint Mathematik 4/2008.

[14] J. Sprekels and D. Tiba, Optimization problems for thin elastic structures, in 'Optimal Control of Coupled System of PDE', ISNM 158 Birkhaeuser (2009), 255-273.