Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2010_30_2_a4, author = {My\'sli\'nski, Andrzej}, title = {Topology optimization of systems governed by variational inequalities}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {237--252}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2010}, zbl = {1221.49077}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2010_30_2_a4/} }
TY - JOUR AU - Myśliński, Andrzej TI - Topology optimization of systems governed by variational inequalities JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2010 SP - 237 EP - 252 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2010_30_2_a4/ LA - en ID - DMDICO_2010_30_2_a4 ER -
%0 Journal Article %A Myśliński, Andrzej %T Topology optimization of systems governed by variational inequalities %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2010 %P 237-252 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2010_30_2_a4/ %G en %F DMDICO_2010_30_2_a4
Myśliński, Andrzej. Topology optimization of systems governed by variational inequalities. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 2, pp. 237-252. http://geodesic.mathdoc.fr/item/DMDICO_2010_30_2_a4/
[1] G. Allaire, Shape optimization by the homogenization method, New York, Springer, 2002. doi: 10.1007/978-1-4684-9286-6
[2] A. Chambolle, A density result in two-dimensional linearized elasticity and applications, Arch. Ration. Mech. Anal. 167 (2003), 211-233.
[3] P. Fulmański, A. Laurain, J.F. Scheid and J. Sokołowski, A level set method in shape and topology optimization for variational inequalities, Int. J. Appl. Math. Comput. Sci. 17 (2007), 413-430. doi: 10.2478/v10006-007-0034-z
[4] S. Garreau, Ph. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case, SIAM J. Control Optim. 39 (2001), 1756-1778.
[5] I. Hlavaček, J. Haslinger, J. Nečas and J. Lovišek, Solving of Variational Inequalities in Mechanics, Mir, Moscow (in Russian), 1986.
[6] S. Hüber, G. Stadler and B. Wohlmuth, A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction, SIAM J. Sci. Comput. 30 (2008), 572-596.
[7] A. Myśliński, Level set method for optimization of contact problems, Engineering Analysis with Boundary Elements 32 (2008), 986-994.
[8] A. Myśliński, Optimization of contact problems using a topology derivative method, in: B.H.V. Topping, M. Papadrakakis, (Editors), Proceedings of the Ninth International Conference on Computational Structures Technology, Civil-Comp Press, Stirlingshire, UK, Paper 177 (doi: 10.4203/ccp.88.177), 2008.
[9] S.A. Nazarov and J. Sokołowski, Asymptotic Analysis of Shape Functionals, J. Math. Pures Appl. 82 (2) (2003), 125-196. doi: 10.1016/S0021-7824(03)00004-7
[10] A.A. Novotny, R.A. Feijóo, C. Padra and E. Tarocco, Topological derivative for linear elastic plate bending problems, Control and Cybernetics 34 (2005), 339-361.
[11] J. Sokołowski and A. Żochowski, On topological derivative in shape optimization, in: Optimal Shape Design and Modelling, T. Lewiński, O. Sigmund, J. Sokołowski, A. Żochowski, (Editors), Academic Printing House EXIT, Warsaw, 2004, 55-143.
[12] J. Sokołowski and A. Żochowski, Topological derivatives for optimization of plane elasticity contact problems, Engineering Analysis with Boundary Elements 32 (2008), 900-908.
[13] J. Sokołowski and J.P. Zolesio, Introduction to shape optimization. Shape sensitivity analysis, Berlin, Springer, 1992.