The method of upper and lower solutions for partial hyperbolic fractional order differential inclusions with impulses
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 1, pp. 141-161.

Voir la notice de l'article provenant de la source Library of Science

In this paper we use the upper and lower solutions method to investigate the existence of solutions of a class of impulsive partial hyperbolic differential inclusions at fixed moments of impulse involving the Caputo fractional derivative. These results are obtained upon suitable fixed point theorems.
Keywords: impulsive hyperbolic differential inclusion, fractional order, upper solution, lower solution, left-sided mixed Riemann-Liouville integral, Caputo fractional-order derivative, fixed point
@article{DMDICO_2010_30_1_a7,
     author = {Abbas, Sa{\"\i}d and Benchohra, Mouffak},
     title = {The method of upper and lower solutions for partial hyperbolic fractional order differential inclusions with impulses},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {141--161},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2010},
     zbl = {1203.26005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a7/}
}
TY  - JOUR
AU  - Abbas, Saïd
AU  - Benchohra, Mouffak
TI  - The method of upper and lower solutions for partial hyperbolic fractional order differential inclusions with impulses
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2010
SP  - 141
EP  - 161
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a7/
LA  - en
ID  - DMDICO_2010_30_1_a7
ER  - 
%0 Journal Article
%A Abbas, Saïd
%A Benchohra, Mouffak
%T The method of upper and lower solutions for partial hyperbolic fractional order differential inclusions with impulses
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2010
%P 141-161
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a7/
%G en
%F DMDICO_2010_30_1_a7
Abbas, Saïd; Benchohra, Mouffak. The method of upper and lower solutions for partial hyperbolic fractional order differential inclusions with impulses. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 1, pp. 141-161. http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a7/

[1] S. Abbas and M. Benchohra, Partial hyperbolic differential equations with finite delay involving the Caputo fractional derivative, Commun. Math. Anal. 7 (2009), 62-72.

[2] S. Abbas and M. Benchohra, Darboux problem for perturbed partial differential equations of fractional order with finite delay, Nonlinear Anal.: Hybrid Systems 3 (2009), 597-604.

[3] R.P Agarwal, M. Benchohra and S. Hamani, A survey on existence result for boundary value problems of nonlinear fractional differential equations and inclusions, Acta. Appl. Math. doi:10.1007/s10440-008-9356-6

[4] A. Belarbi, M. Benchohra and A. Ouahab, Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces, Appl. Anal. 85 (2006), 1459-1470.

[5] M. Benchohra, J.R. Graef and S. Hamani, Existence results for boundary value problems of nonlinear fractional differential equations with integral conditions, Appl. Anal. 87 (7) (2008), 851-863.

[6] M. Benchohra, S. Hamani and S.K. Ntouyas, Boundary value problems for differential equations with fractional order, Surv. Math. Appl. 3 (2008), 1-12.

[7] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, Vol. 2, New York, 2006. doi:10.1155/9789775945501

[8] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for functional differential equations of fractional order, J. Math. Anal. Appl. 338 (2008), 1340-1350.

[9] H.F. Bohnenblust and S. Karlin, On a theorem of ville. Contribution to the theory of games, Annals of Mathematics Studies, no. 24, Priceton University Press, Princeton N.G. (1950), 155-160.

[10] M. Dawidowski and I. Kubiaczyk, An existence theorem for the generalized hyperbolic equation $z''_{xy} ∈ F(x,y,z)$ in Banach space, Ann. Soc. Math. Pol. Ser. I, Comment. Math. 30 (1) (1990), 41-49.

[11] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992. doi:10.1515/9783110874228

[12] K. Diethelm and A.D. Freed, On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity, in: 'Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties' (F. Keil, W. Mackens, H. Voss and J. Werther, Eds), pp 217-224, Springer-Verlag, Heidelberg, 1999.

[13] K. Diethelm and N.J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248.

[14] L. Gaul, P. Klein and S. Kempfle, Damping description involving fractional operators, Mech. Systems Signal Processing 5 (1991), 81-88.

[15] W.G. Glockle and T.F. Nonnenmacher, A fractional calculus approach of selfsimilar protein dynamics, Biophys. J. 68 (1995), 46-53.

[16] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications, 495, Kluwer Academic Publishers, Dordrecht, 1999.

[17] S. Heikkila and V. Lakshmikantham, Monotone Iterative Technique for Nonlinear Discontinuous Differential Equations, Marcel Dekker Inc., New York, 1994.

[18] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

[19] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer, Dordrecht, Boston, London, 1997.

[20] Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 1999. doi:10.1007/978-94-011-4635-7

[21] Z. Kamont and K. Kropielnicka, Differential difference inequalities related to hyperbolic functional differential systems and applications, Math. Inequal. Appl. 8 (4) (2005), 655-674.

[22] A.A. Kilbas, B. Bonilla and J. Trujillo, Nonlinear differential equations of fractional order in a space of integrable functions, Dokl. Russ. Akad. Nauk 374 (4) (2000), 445-449.

[23] A.A. Kilbas and S.A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations 41 (2005), 84-89.

[24] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

[25] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.

[26] V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.

[27] V. Lakshmikantham and S.G. Pandit, The method of upper, lower solutions and hyperbolic partial differential equations, J. Math. Anal. Appl. 105 (1985), 466-477.

[28] G.S. Ladde, V. Lakshmikanthan and A.S. Vatsala, Monotone Iterative Techniques for Nonliner Differential Equations, Pitman Advanced Publishing Program, London, 1985.

[29] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in: 'Fractals and Fractional Calculus in Continuum Mechanics' (A. Carpinteri and F. Mainardi, Eds), pp. 291-348, Springer-Verlag, Wien, 1997.

[30] F. Metzler, W. Schick, H.G. Kilian and T.F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180-7186. doi:10.1063/1.470346

[31] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.

[32] S.G. Pandit, Monotone methods for systems of nonlinear hyperbolic problems in two independent variables, Nonlinear Anal. 30 (1997), 235-272. doi:10.1016/S0362-546X(96)00265-9

[33] I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.

[34] I. Podlubny, I. Petraš, B.M. Vinagre, P. O'Leary and L. Dorčak, Analogue realizations of fractional-order controllers, fractional order calculus and its applications, Nonlinear Dynam. 29 (2002), 281-296. doi:10.1023/A:1016556604320

[35] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.

[36] N.P. Semenchuk, On one class of differential equations of noninteger order, Differents. Uravn. 10 (1982), 1831-1833.

[37] A.A. Tolstonogov, Differential Inclusions in a Banach Space, Kluwer Academic Publishers, Dordrecht, 2000. doi:10.1007/978-94-015-9490-5

[38] A.N. Vityuk, Existence of solutions of partial differential inclusions of fractional order, Izv. Vyssh. Uchebn., Ser. Mat. 8 (1997), 13-19.

[39] A.N. Vityuk and A.V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscil. 7 (3) (2004), 318-325. doi:10.1007/s11072-005-0015-9

[40] C. Yu and G. Gao, Existence of fractional differential equations, J. Math. Anal. Appl. 310 (2005), 26-29.

[41] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional diffrential equations, Electron. J. Differential Equations 36 (2006), 1-12. doi:10.1155/ADE/2006/90479