Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2010_30_1_a5, author = {Dylewski, Robert}, title = {Projection method with level control in convex minimization}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {101--120}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2010}, zbl = {1201.65099}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a5/} }
TY - JOUR AU - Dylewski, Robert TI - Projection method with level control in convex minimization JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2010 SP - 101 EP - 120 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a5/ LA - en ID - DMDICO_2010_30_1_a5 ER -
%0 Journal Article %A Dylewski, Robert %T Projection method with level control in convex minimization %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2010 %P 101-120 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a5/ %G en %F DMDICO_2010_30_1_a5
Dylewski, Robert. Projection method with level control in convex minimization. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 1, pp. 101-120. http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a5/
[1] A. Cegielski, Relaxation Methods in Convex Optimization Problems, Higher College of Engineering, Series Monographies, No. 67 (1993), Zielona Góra, Poland (Polish).
[2] A. Cegielski, A method of projection onto an acute cone with level control in convex minimization, Mathematical Programming 85 (1999), 469-490.
[3] A. Cegielski and R. Dylewski, Selection strategies in projection methods for convex minimization problems, Discuss. Math. Differential Inclusions, Control and Optimization 22 (2002), 97-123. doi:10.7151/dmdico.1034
[4] A. Cegielski and R. Dylewski, Residual selection in a projection method for convex minimization problems, Optimization 52 (2003), 211-220.
[5] S. Kim, H. Ahn and S.-C. Cho, Variable target value subgradient method, Mathematical Programming 49 (1991), 359-369.
[6] K.C. Kiwiel, The efficiency of subgradient projection methods for convex optimization, part I: General level methods, SIAM J. Control and Optimization 34 (1996), 660-676.
[7] C. Lemaréchal, A.S. Nemirovskii and Yu.E. Nesterov, New variants of bundle methods, Mathematical Programming 69 (1995), 111-147.
[8] B.T. Polyak, Minimization of unsmooth functionals, Zh. Vychisl. Mat. i Mat. Fiz. 9 (1969), 509-521.