Projection method with level control in convex minimization
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 1, pp. 101-120.

Voir la notice de l'article provenant de la source Library of Science

We study a projection method with level control for nonsmoooth convex minimization problems. We introduce a changeable level parameter to level control. The level estimates the minimal value of the objective function and is updated in each iteration. We analyse the convergence and estimate the efficiency of this method.
Keywords: projection method, convex nondifferentiable minimization, level control
@article{DMDICO_2010_30_1_a5,
     author = {Dylewski, Robert},
     title = {Projection method with level control in convex minimization},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {101--120},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2010},
     zbl = {1201.65099},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a5/}
}
TY  - JOUR
AU  - Dylewski, Robert
TI  - Projection method with level control in convex minimization
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2010
SP  - 101
EP  - 120
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a5/
LA  - en
ID  - DMDICO_2010_30_1_a5
ER  - 
%0 Journal Article
%A Dylewski, Robert
%T Projection method with level control in convex minimization
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2010
%P 101-120
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a5/
%G en
%F DMDICO_2010_30_1_a5
Dylewski, Robert. Projection method with level control in convex minimization. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 1, pp. 101-120. http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a5/

[1] A. Cegielski, Relaxation Methods in Convex Optimization Problems, Higher College of Engineering, Series Monographies, No. 67 (1993), Zielona Góra, Poland (Polish).

[2] A. Cegielski, A method of projection onto an acute cone with level control in convex minimization, Mathematical Programming 85 (1999), 469-490.

[3] A. Cegielski and R. Dylewski, Selection strategies in projection methods for convex minimization problems, Discuss. Math. Differential Inclusions, Control and Optimization 22 (2002), 97-123. doi:10.7151/dmdico.1034

[4] A. Cegielski and R. Dylewski, Residual selection in a projection method for convex minimization problems, Optimization 52 (2003), 211-220.

[5] S. Kim, H. Ahn and S.-C. Cho, Variable target value subgradient method, Mathematical Programming 49 (1991), 359-369.

[6] K.C. Kiwiel, The efficiency of subgradient projection methods for convex optimization, part I: General level methods, SIAM J. Control and Optimization 34 (1996), 660-676.

[7] C. Lemaréchal, A.S. Nemirovskii and Yu.E. Nesterov, New variants of bundle methods, Mathematical Programming 69 (1995), 111-147.

[8] B.T. Polyak, Minimization of unsmooth functionals, Zh. Vychisl. Mat. i Mat. Fiz. 9 (1969), 509-521.