Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2010_30_1_a4, author = {Misztela, Arkadiusz}, title = {Optimal control problems with upper semicontinuous {Hamiltonians}}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {71--99}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2010}, zbl = {1197.49031}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a4/} }
TY - JOUR AU - Misztela, Arkadiusz TI - Optimal control problems with upper semicontinuous Hamiltonians JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2010 SP - 71 EP - 99 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a4/ LA - en ID - DMDICO_2010_30_1_a4 ER -
%0 Journal Article %A Misztela, Arkadiusz %T Optimal control problems with upper semicontinuous Hamiltonians %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2010 %P 71-99 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a4/ %G en %F DMDICO_2010_30_1_a4
Misztela, Arkadiusz. Optimal control problems with upper semicontinuous Hamiltonians. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 1, pp. 71-99. http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a4/
[1] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg-New York-Toyo, 1984.
[2] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhauser, Boston, 1997. doi:10.1007/978-0-8176-4755-1
[3] E.N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians, Commun. In Partial Differential Equations. 15 (12) (1990), 1713-1742. doi:10.1080/03605309908820745
[4] A. Briani, Convergence of Hamilton-Jacobi equations for sequences of optimal control problems, Commun. Appl. Anal. 4 (2000), 227-244.
[5] G. Buttazzo and G. Dal Maso, Γ-convergence and optimal control problems, J. Optim. Theory Appl. 38 (1982), 385-407. doi:10.1007/BF00935345
[6] L. Cesari, Optimization - theory and applications, problems with ordinary differential equations, Springer, New York, 1983.
[7] F. Clarke, Optimization and nonsmooth analysis, Wiley, New York, 1983.
[8] G. Dal Maso and H. Frankowska, Autonomous integral functionals with discontinuous nonconvex integrands: Lipschitz regularity of minimizers, DuBois-Reymond necessary conditions, and Hamilton-Jacobi equations.
[9] H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, SIAM J. Control Optim. 31 (1993), 257-272. doi:10.1137/0331016
[10] R. Goebel, Convex optimal control problems with smooth Hamiltonians, Siam J. Control Optim. 43 (2005), 1787-1811. doi:10.1137/S0363012902411581
[11] S. Plaskacz and M. Quincampoix, Discontinuous Mayer control problem under stateconstrainc, Topol. Methods Nonlinear Anal. 15 (1) (2000), 91-100.
[12] S. Plaskacz and M. Quincampoix, On representation formulas for Hamilton Jacobi's equations related to calculus of variations problems, Journal of the Juliusz Schauder Center 20 (2002), 85-118.
[13] S. Plaskacz and M. Quincampoix, Value-functions for differential games and control systems with discontinuous terminal cost, SIAM J. Control Optim. 39 (5) (2000), 1485-1498. doi:10.1137/S0363012998340387
[14] R. Rockafellar, Convex Analysis, Princeton, New Jersey, 1970.
[15] R. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998. doi:10.1007/978-3-642-02431-3
[16] A.I. Subbotin, Generalized solutions of first-order PDEs: The dynamical optimization perspective, Translated from Russian. Systems Control: Foundations Applications. Birkhuser Boston, Inc., Boston, MA, 1995.