Quadratic integral equations in reflexive Banach space
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 1, pp. 61-69.

Voir la notice de l'article provenant de la source Library of Science

This paper is devoted to proving the existence of weak solutions to some quadratic integral equations of fractional type in a reflexive Banach space relative to the weak topology. A special case will be considered.
Keywords: Pettis integral, fractional calculus, fixed point theorem, quadratic integral equation
@article{DMDICO_2010_30_1_a3,
     author = {Salem, Hussein},
     title = {Quadratic integral equations in reflexive {Banach} space},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {61--69},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2010},
     zbl = {1203.26011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a3/}
}
TY  - JOUR
AU  - Salem, Hussein
TI  - Quadratic integral equations in reflexive Banach space
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2010
SP  - 61
EP  - 69
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a3/
LA  - en
ID  - DMDICO_2010_30_1_a3
ER  - 
%0 Journal Article
%A Salem, Hussein
%T Quadratic integral equations in reflexive Banach space
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2010
%P 61-69
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a3/
%G en
%F DMDICO_2010_30_1_a3
Salem, Hussein. Quadratic integral equations in reflexive Banach space. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 1, pp. 61-69. http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a3/

[1] O. Arino, S. Gautier and T. Penot, A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations, Funkc. Ekvac. 27 (1984), 273-279.

[2] I.K. Argyros, Quadratic quations and applications to Chandrasekher's and related equations, Bull. Austral. Math. Soc. 32 (1985), 275-292. doi:10.1017/S0004972700009953

[3] J.M. Ball, Weak continuity properties of mapping and semi-groups, Proc. Royal Soc. Edinbourgh Sect. (A) 72 (1973-1974), 275-280.

[4] J. Banaś and A. Martinon, Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl. 47 (2004), 271-279. doi:10.1016/S0898-1221(04)90024-7

[5] J. Banaś, M. Lecko and W.G. El-Sayed, Existence theorems of some quadratic integral equations, J. Math. Anal. Appl. 222 (1998), 276-285. doi:10.1006/jmaa.1998.5941

[6] J. Banaś and B. Rzepka, Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl. 322 (2007), 1370-1378.

[7] L.W. Busbridge, The Mathematics of Radiative Transfer, Cambridge univesrity press, Cambridge, MA, 1960.

[8] S. Chandrasekher, Radiative Transfer, Dver, New York, 1960.

[9] M. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl. 311 (1) (2005), 112-119.

[10] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.

[11] M.M. El-Borai, W.G. El-Sayed and M.I. Abbas, Monotonic solutions of a class of quadratic singular integral equation of Volterra type, Internat. J. Contemp. Math. Sci. 2 (2) (2007), 89-102.

[12] R.F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81-86. doi:10.1090/S0002-9939-1981-0603606-8

[13] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

[14] S. Hu, M. Khavanin and W. Zhuang, Integral equations arising in the kinetic of Gases, Amer. Math. Soc. Colloq. Publ. 31 Appl. Analysis 25 (1989), 261-266.

[15] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York, 1993.

[16] I. Podlubny, Fractional differential equations, Academic Press, San Diego, New York, London, 1999.

[17] A.R. Mitchell and Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, in: Nonlinear Equations in Abstract Spaces, V. Lakshmikantham (ed.) (1978), 387-404.

[18] D. O'Regan, Fixed point theory for weakly sequentially continuous mapping, Math. Comput. Modeling 27 (5) (1998), 1-14.

[19] B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304.

[20] H.A.H. Salem, A.M.A. El-Sayed and O.L. Moustafa, A note on the fractional calculus in Banach spaces, Studia Sci. Math. Hungar. 42 (2) (2005), 115-113.

[21] S.G. Samko, A.A. Kilbas and O.L. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publisher, 1993.

[22] A. Szep, Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Studia Sci. Math. Hungar. 6 (1971), 197-203.