Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2010_30_1_a3, author = {Salem, Hussein}, title = {Quadratic integral equations in reflexive {Banach} space}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {61--69}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2010}, zbl = {1203.26011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a3/} }
TY - JOUR AU - Salem, Hussein TI - Quadratic integral equations in reflexive Banach space JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2010 SP - 61 EP - 69 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a3/ LA - en ID - DMDICO_2010_30_1_a3 ER -
Salem, Hussein. Quadratic integral equations in reflexive Banach space. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 1, pp. 61-69. http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a3/
[1] O. Arino, S. Gautier and T. Penot, A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations, Funkc. Ekvac. 27 (1984), 273-279.
[2] I.K. Argyros, Quadratic quations and applications to Chandrasekher's and related equations, Bull. Austral. Math. Soc. 32 (1985), 275-292. doi:10.1017/S0004972700009953
[3] J.M. Ball, Weak continuity properties of mapping and semi-groups, Proc. Royal Soc. Edinbourgh Sect. (A) 72 (1973-1974), 275-280.
[4] J. Banaś and A. Martinon, Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl. 47 (2004), 271-279. doi:10.1016/S0898-1221(04)90024-7
[5] J. Banaś, M. Lecko and W.G. El-Sayed, Existence theorems of some quadratic integral equations, J. Math. Anal. Appl. 222 (1998), 276-285. doi:10.1006/jmaa.1998.5941
[6] J. Banaś and B. Rzepka, Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl. 322 (2007), 1370-1378.
[7] L.W. Busbridge, The Mathematics of Radiative Transfer, Cambridge univesrity press, Cambridge, MA, 1960.
[8] S. Chandrasekher, Radiative Transfer, Dver, New York, 1960.
[9] M. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl. 311 (1) (2005), 112-119.
[10] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.
[11] M.M. El-Borai, W.G. El-Sayed and M.I. Abbas, Monotonic solutions of a class of quadratic singular integral equation of Volterra type, Internat. J. Contemp. Math. Sci. 2 (2) (2007), 89-102.
[12] R.F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81-86. doi:10.1090/S0002-9939-1981-0603606-8
[13] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[14] S. Hu, M. Khavanin and W. Zhuang, Integral equations arising in the kinetic of Gases, Amer. Math. Soc. Colloq. Publ. 31 Appl. Analysis 25 (1989), 261-266.
[15] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York, 1993.
[16] I. Podlubny, Fractional differential equations, Academic Press, San Diego, New York, London, 1999.
[17] A.R. Mitchell and Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, in: Nonlinear Equations in Abstract Spaces, V. Lakshmikantham (ed.) (1978), 387-404.
[18] D. O'Regan, Fixed point theory for weakly sequentially continuous mapping, Math. Comput. Modeling 27 (5) (1998), 1-14.
[19] B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304.
[20] H.A.H. Salem, A.M.A. El-Sayed and O.L. Moustafa, A note on the fractional calculus in Banach spaces, Studia Sci. Math. Hungar. 42 (2) (2005), 115-113.
[21] S.G. Samko, A.A. Kilbas and O.L. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publisher, 1993.
[22] A. Szep, Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Studia Sci. Math. Hungar. 6 (1971), 197-203.