Second-order viability result in Banach spaces
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 1, pp. 5-21.

Voir la notice de l'article provenant de la source Library of Science

We show the existence result of viable solutions to the second-order differential inclusion
Keywords: differential inclusion,viability, measurability, selection
@article{DMDICO_2010_30_1_a0,
     author = {Aitalioubrahim, Myelkebir and Sajid, Said},
     title = {Second-order viability result in {Banach} spaces},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2010},
     zbl = {1206.34083},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a0/}
}
TY  - JOUR
AU  - Aitalioubrahim, Myelkebir
AU  - Sajid, Said
TI  - Second-order viability result in Banach spaces
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2010
SP  - 5
EP  - 21
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a0/
LA  - en
ID  - DMDICO_2010_30_1_a0
ER  - 
%0 Journal Article
%A Aitalioubrahim, Myelkebir
%A Sajid, Said
%T Second-order viability result in Banach spaces
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2010
%P 5-21
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a0/
%G en
%F DMDICO_2010_30_1_a0
Aitalioubrahim, Myelkebir; Sajid, Said. Second-order viability result in Banach spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a0/

[1] B. Aghezzaf and S. Sajid, On the second-order contingent set and differential inclusions, J. Conv. Anal. 7 (1) (2000), 183-195.

[2] K.S. Alkulaibi and A.G. Ibrahim, On existence of monotone solutions for second-order non-convex differential inclusions in infinite dimensional spaces, Portugaliae Mathematica 61 (2) (2004), 231-143.

[3] S. Amine, R. Morchadi and S. Sajid, Carathéodory perturbation of a second-order differential inclusions with constraints, Electronic J. Diff. Eq. (2005), 1-11.

[4] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. doi:10.1007/BFb0087685

[5] B. Cornet and G. Haddad, Théorème de viabilité pour les inclusions différentielles du seconde ordre, Isr. J. Math. 57 (2) (1987), 225-238.

[6] A. Dubovitskij and A.A. Miljutin, Extremums problems with constraints, Soviet Math. 4 (1963), 452-455.

[7] T.X. Duc Ha, Existence of viable solutions for nonconvex-valued differential inclusions in Banach spaces, Portugaliae Mathematica 52 Fasc. 2, 1995.

[8] M. Larrieu, Invariance d'un fermé pour un champ de vecteurs de Carathéodory, Pub. Math. de Pau, 1981.

[9] V. Lupulescu, A viability result for second order differential inclusions, Electron J. Diff. Eq. 76 (2003), 1-12.

[10] V. Lupulescu, Existence of solutions for nonconvex second order differential inclusions, Applied Math. E-notes 3 (2003), 115-123.

[11] R. Morchadi and S. Sajid, Noncovex second-order differential inclusion, Bulletin of the Polish Academy of Sciences 47 (3) (1999).

[12] Q. Zhu, On the solution set of differential inclusions in Banach spaces, J. Differ. Eq. 41 (2001), 1-8.