Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2010_30_1_a0, author = {Aitalioubrahim, Myelkebir and Sajid, Said}, title = {Second-order viability result in {Banach} spaces}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {5--21}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2010}, zbl = {1206.34083}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a0/} }
TY - JOUR AU - Aitalioubrahim, Myelkebir AU - Sajid, Said TI - Second-order viability result in Banach spaces JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2010 SP - 5 EP - 21 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a0/ LA - en ID - DMDICO_2010_30_1_a0 ER -
%0 Journal Article %A Aitalioubrahim, Myelkebir %A Sajid, Said %T Second-order viability result in Banach spaces %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2010 %P 5-21 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a0/ %G en %F DMDICO_2010_30_1_a0
Aitalioubrahim, Myelkebir; Sajid, Said. Second-order viability result in Banach spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a0/
[1] B. Aghezzaf and S. Sajid, On the second-order contingent set and differential inclusions, J. Conv. Anal. 7 (1) (2000), 183-195.
[2] K.S. Alkulaibi and A.G. Ibrahim, On existence of monotone solutions for second-order non-convex differential inclusions in infinite dimensional spaces, Portugaliae Mathematica 61 (2) (2004), 231-143.
[3] S. Amine, R. Morchadi and S. Sajid, Carathéodory perturbation of a second-order differential inclusions with constraints, Electronic J. Diff. Eq. (2005), 1-11.
[4] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. doi:10.1007/BFb0087685
[5] B. Cornet and G. Haddad, Théorème de viabilité pour les inclusions différentielles du seconde ordre, Isr. J. Math. 57 (2) (1987), 225-238.
[6] A. Dubovitskij and A.A. Miljutin, Extremums problems with constraints, Soviet Math. 4 (1963), 452-455.
[7] T.X. Duc Ha, Existence of viable solutions for nonconvex-valued differential inclusions in Banach spaces, Portugaliae Mathematica 52 Fasc. 2, 1995.
[8] M. Larrieu, Invariance d'un fermé pour un champ de vecteurs de Carathéodory, Pub. Math. de Pau, 1981.
[9] V. Lupulescu, A viability result for second order differential inclusions, Electron J. Diff. Eq. 76 (2003), 1-12.
[10] V. Lupulescu, Existence of solutions for nonconvex second order differential inclusions, Applied Math. E-notes 3 (2003), 115-123.
[11] R. Morchadi and S. Sajid, Noncovex second-order differential inclusion, Bulletin of the Polish Academy of Sciences 47 (3) (1999).
[12] Q. Zhu, On the solution set of differential inclusions in Banach spaces, J. Differ. Eq. 41 (2001), 1-8.